

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-13103-2

Client Project/Site: Hoosick Falls WTP

For:

CT Male Associates DPC 50 Century Hill Dr Latham, New York 12110

Attn: Mr. Kirk Moline

Authorized for release by: 9/23/2020 5:56:34 PM

Dorothy Coplan, Project Manager (717)556-4611

dorothycoplan@eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

Ŏ

10

40

13

14

1 %

3

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- * QC recoveries that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result.
- * Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- * Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Dorothy Coplan

Project Manager

9/23/2020 5:56:34 PM

Page 2 of 31

Λ

4

7

0

1 N

11

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	23
Lab Chronicle	25
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receint Checklists	31

11

13

14

Definitions/Glossary

Client: CT Male Associates DPC Job ID: 410-13103-2

Project/Site: Hoosick Falls WTP

Qualifiers

10	٠,٧	ΛS
	, II	$^{\prime\prime}$

Qualifier	Qualifier Description
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Lancaster Laboratories Env, LLC

Page 4 of 31

Case Narrative

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-13103-2

Comments

No additional comments.

Receipt

The samples were received on 9/4/2020 11:03 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.9° C.

Methods 537 (modified), 537 DW: The following sample(s) were found to contain residual chlorine: GAC Influent (410-13103-1).

Methods 537 (modified), 537 DW: The following sample(s) were found to contain residual chlorine: PV-2 25 (410-13103-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

Lab Sample ID: 410-13103-1 Client Sample ID: GAC Influent Result Qualifier Unit Dil Fac D Method Analyte RL **Prep Type** 537 DW ng/L Perfluorohexanoic acid 12 1.8 Total/NA Perfluoroheptanoic acid 13 1.8 ng/L 1 537 DW Total/NA Perfluorooctanesulfonic acid 3.4 537 DW Total/NA 1.8 ng/L 1 Perfluorooctanoic acid - DL 420 10 537 DW 18 ng/L Total/NA Client Sample ID: GAC Midfluent Lab Sample ID: 410-13103-2 No Detections. Client Sample ID: GAC Effluent Lab Sample ID: 410-13103-3 No Detections. Client Sample ID: PV-1 25 Lab Sample ID: 410-13103-4 Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid 537 DW 2.6 1.8 ng/L Total/NA 537 DW Perfluorooctanoic acid 24 1.8 ng/L Total/NA Lab Sample ID: 410-13103-5 Client Sample ID: PV-1 50 No Detections. Client Sample ID: PV-1 75 Lab Sample ID: 410-13103-6 No Detections. Client Sample ID: PV-2 25 Lab Sample ID: 410-13103-7 No Detections. Client Sample ID: PV-2-50 Lab Sample ID: 410-13103-8 No Detections. Client Sample ID: PV-2 75 Lab Sample ID: 410-13103-9 No Detections. Client Sample ID: FTB01-200903 Lab Sample ID: 410-13103-10 No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample ID: LTB01-200903

No Detections.

9/23/2020

Lab Sample ID: 410-13103-11

3

8

10

11

13

14

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Influent

Lab Sample ID: 410-13103-1

Date Collected: 09/03/20 09:35 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	12		1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluoroheptanoic acid	13		1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorooctanesulfonic acid	3.4		1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	100		70 - 130			09/09/20 10:26	09/12/20 07:32	1
13C2 PFDA	119		70 - 130			09/09/20 10:26	09/12/20 07:32	1
13C2 PFHxA	121		70 - 130			09/09/20 10:26	09/12/20 07:32	1
Method: 537 DW - Perfluorin	ated Alkyl Ad	ids (LC/M	S) - DL					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	420		18	ng/L		09/09/20 10:26	09/16/20 02:04	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	106		70 - 130			09/09/20 10:26	09/16/20 02:04	10
13C2 PFDA	101		70 - 130			09/09/20 10:26	09/16/20 02:04	10
13C2 PFHxA	104		70 - 130			09/09/20 10:26	09/16/20 02:04	10

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Midfluent

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-2 Date Collected: 09/03/20 09:42

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 07:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	94		70 - 130			09/09/20 10:26	09/12/20 07:43	1
13C2 PFDA	85		70 - 130			09/09/20 10:26	09/12/20 07:43	1
13C2 PFHxA	86		70 - 130			09/09/20 10:26	09/12/20 07:43	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Effluent

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-3 Date Collected: 09/03/20 09:45

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluoroheptanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorooctanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorononanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorodecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorotridecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorotetradecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorobutanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorohexanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorooctanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
NEtFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
NMeFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluoroundecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Perfluorododecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 08:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	82		70 - 130			09/09/20 10:26	09/12/20 08:06	1
13C2 PFDA	81		70 - 130			09/09/20 10:26	09/12/20 08:06	1
13C2 PFHxA	79		70 - 130			09/09/20 10:26	09/12/20 08:06	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Lab Sample ID: 410-13103-4 Client Sample ID: PV-1 25

Date Collected: 09/03/20 09:47 **Matrix: Water** Date Received: 09/04/20 11:03

Method: 537 DW - Perfluor	•	•	•		_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	2.6		1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorooctanoic acid	24		1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	95		70 - 130			09/09/20 10:26	09/12/20 08:18	1
13C2 PFDA	99		70 - 130			09/09/20 10:26	09/12/20 08:18	1
13C2 PFHxA	100		70 - 130			09/09/20 10:26	09/12/20 08:18	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-1 50

Lab Sample ID: 410-13103-5 **Matrix: Water**

Date Collected: 09/03/20 09:50 Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	101		70 - 130			09/09/20 10:26	09/12/20 08:29	1
13C2 PFDA	96		70 - 130			09/09/20 10:26	09/12/20 08:29	1
13C2 PFHxA	90		70 - 130			09/09/20 10:26	09/12/20 08:29	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-1 75

Lab Sample ID: 410-13103-6

Matrix: Water

Date Collected: 09/03/20 09:53 Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 08:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	83		70 - 130			09/09/20 10:26	09/12/20 08:41	1
13C2 PFDA	73		70 - 130			09/09/20 10:26	09/12/20 08:41	1
13C2 PFHxA	74		70 - 130			09/09/20 10:26	09/12/20 08:41	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Lab Sample ID: 410-13103-7 Client Sample ID: PV-2 25

Date Collected: 09/03/20 09:56 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
NEtFOSAA	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
NMeFOSAA	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/17/20 11:21	09/18/20 00:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	95		70 - 130			09/17/20 11:21	09/18/20 00:12	1
13C2 PFDA	93		70 - 130			09/17/20 11:21	09/18/20 00:12	1
13C2 PFHxA	94		70 - 130			09/17/20 11:21	09/18/20 00:12	1

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

Client Sample ID: PV-2-50 Lab Sample ID: 410-13103-8

Date Collected: 09/03/20 09:59

Date Received: 09/04/20 11:03

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluoroheptanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorooctanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorononanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorodecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorotridecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorotetradecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorobutanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorohexanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorooctanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
NEtFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
NMeFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluoroundecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Perfluorododecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/16/20 02:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	82		70 - 130			09/09/20 10:26	09/16/20 02:27	1
13C2 PFDA	80		70 - 130			09/09/20 10:26	09/16/20 02:27	1
13C2 PFHxA	76		70 - 130			09/09/20 10:26	09/16/20 02:27	1

5

3

5

6

8

9

1 0

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-2 75 Lab Sample ID: 410-13103-9

Date Collected: 09/03/20 10:05 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluoroheptanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorooctanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorononanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorodecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorotridecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorotetradecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorobutanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorohexanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorooctanesulfonic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
NEtFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
NMeFOSAA	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluoroundecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Perfluorododecanoic acid	1.9	U	1.9	ng/L		09/09/20 10:26	09/12/20 09:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	100		70 - 130			09/09/20 10:26	09/12/20 09:15	1
13C2 PFDA	93		70 - 130			09/09/20 10:26	09/12/20 09:15	1
13C2 PFHxA	89		70 - 130			09/09/20 10:26	09/12/20 09:15	1

Client: CT Male Associates DPC Job ID: 410-13103-2

Project/Site: Hoosick Falls WTP

Client Sample ID: FTB01-200903 Lab Sample ID: 410-13103-10

Date Collected: 09/03/20 10:10 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	100		70 - 130			09/09/20 10:26	09/12/20 09:27	1
13C2 PFDA	93		70 - 130			09/09/20 10:26	09/12/20 09:27	1
13C2 PFHxA	87		70 - 130			09/09/20 10:26	09/12/20 09:27	1

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Client Sample ID: LTB01-200903

Date Received: 09/04/20 11:03

13C2 PFHxA

Lab Sample ID: 410-13103-11 Date Collected: 09/03/20 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluoroheptanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorooctanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorononanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorodecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorotridecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorotetradecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorobutanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorohexanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorooctanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
NEtFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
NMeFOSAA	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluoroundecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Perfluorododecanoic acid	1.8	U	1.8	ng/L		09/09/20 10:26	09/12/20 09:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	96		70 - 130			09/09/20 10:26	09/12/20 09:38	1
13C2 PFDA	90		70 - 130			09/09/20 10:26	09/12/20 09:38	1

70 - 130

90

09/09/20 10:26 09/12/20 09:38

Surrogate Summary

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

				_	e Recovery (Acceptance Limits)
		d5NEFOS	PFDA	PFHxA	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
410-13103-1	GAC Influent	100	119	121	
410-13103-1 - DL	GAC Influent	106	101	104	
410-13103-2	GAC Midfluent	94	85	86	
410-13103-3	GAC Effluent	82	81	79	
410-13103-4	PV-1 25	95	99	100	
410-13103-5	PV-1 50	101	96	90	
410-13103-6	PV-1 75	83	73	74	
410-13103-7	PV-2 25	95	93	94	
410-13103-8	PV-2-50	82	80	76	
410-13103-9	PV-2 75	100	93	89	
410-13103-10	FTB01-200903	100	93	87	
410-13103-11	LTB01-200903	96	90	90	
LCS 410-42050/2-A	Lab Control Sample	101	94	92	
LCS 410-44952/2-A	Lab Control Sample	87	87	94	
LCSD 410-42050/3-A	Lab Control Sample Dup	89	87	87	
LCSD 410-44952/3-A	Lab Control Sample Dup	87	90	91	
LLCS 410-42050/4-A	Lab Control Sample	99	92	91	
LLCS 410-44952/4-A	Lab Control Sample	93	94	91	
MB 410-42050/1-A	Method Blank	92	84	83	
MB 410-44952/1-A	Method Blank	85	95	93	

d5NEFOS = d5-NEtFOSAA

PFDA = 13C2 PFDA

PFHxA = 13C2 PFHxA

Page 18 of 31

Job ID: 410-13103-2

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 410-42050/1-A

Matrix: Water

Analysis Batch: 43156

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 42050

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluoroheptanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorooctanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorononanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorodecanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorotridecanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorotetradecanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorobutanesulfonic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorohexanesulfonic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorooctanesulfonic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
NEtFOSAA	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
NMeFOSAA	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluoroundecanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1
Perfluorododecanoic acid	2.0	U	2.0	ng/L		09/09/20 10:26	09/12/20 05:13	1

MB MB

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	d5-NEtFOSAA	92		70 - 130	09/09/20 10:26	09/12/20 05:13	1
	13C2 PFDA	84		70 - 130	09/09/20 10:26	09/12/20 05:13	1
Į	13C2 PFHxA	83		70 - 130	09/09/20 10:26	09/12/20 05:13	1

Lab Sample ID: LCS 410-42050/2-A

Matrix: Water

Analysis Batch: 43156

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 42050

			• • • • • • • • • • • • • • • • • • •					
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid	80.0	74.8		ng/L		94	70 - 130	
Perfluoroheptanoic acid	80.0	77.3		ng/L		97	70 - 130	
Perfluorooctanoic acid	80.0	74.3		ng/L		93	70 - 130	
Perfluorononanoic acid	80.0	76.8		ng/L		96	70 - 130	
Perfluorodecanoic acid	80.0	75.0		ng/L		94	70 - 130	
Perfluorotridecanoic acid	80.0	77.6		ng/L		97	70 - 130	
Perfluorotetradecanoic acid	80.0	76.1		ng/L		95	70 - 130	
Perfluorobutanesulfonic acid	70.8	63.7		ng/L		90	70 - 130	
Perfluorohexanesulfonic acid	73.0	71.1		ng/L		97	70 - 130	
Perfluorooctanesulfonic acid	74.0	71.7		ng/L		97	70 - 130	
NEtFOSAA	80.0	82.9	E	ng/L		104	70 - 130	
NMeFOSAA	80.0	79.5		ng/L		99	70 - 130	
Perfluoroundecanoic acid	80.0	73.1		ng/L		91	70 - 130	
Perfluorododecanoic acid	80.0	75.0		ng/L		94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
d5-NEtFOSAA	101		70 - 130
13C2 PFDA	94		70 - 130
13C2 PFHxA	92		70 - 130

Eurofins Lancaster Laboratories Env, LLC

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCSD 410-42050/3-A

Matrix: Water

Analysis Batch: 43156

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 42050

Sniko	1.000							RPD
Spike LCSD LCSD %Re			%Rec.	Rec.				
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
80.0	74.3		ng/L		93	70 - 130	1	30
80.0	79.4		ng/L		99	70 - 130	3	30
80.0	76.6		ng/L		96	70 - 130	3	30
80.0	79.1		ng/L		99	70 - 130	3	30
80.0	75.6		ng/L		94	70 - 130	1	30
80.0	80.5	E	ng/L		101	70 - 130	4	30
80.0	75.8		ng/L		95	70 - 130	0	30
70.8	63.1		ng/L		89	70 - 130	1	30
73.0	72.9		ng/L		100	70 - 130	3	30
74.0	74.6	E	ng/L		101	70 - 130	4	30
80.0	84.6	E	ng/L		106	70 - 130	2	30
80.0	82.4	E	ng/L		103	70 - 130	4	30
80.0	75.1		ng/L		94	70 - 130	3	30
80.0	75.5		ng/L		94	70 - 130	1	30
	80.0 80.0 80.0 80.0 80.0 80.0 80.0 70.8 73.0 74.0 80.0 80.0	Added Result 80.0 74.3 80.0 79.4 80.0 76.6 80.0 75.6 80.0 80.5 80.0 75.8 70.8 63.1 73.0 72.9 74.0 74.6 80.0 84.6 80.0 82.4 80.0 75.1	Added Result Qualifier 80.0 74.3 80.0 79.4 80.0 76.6 80.0 79.1 80.0 75.6 80.0 80.5 E 80.0 75.8 70.8 63.1 73.0 72.9 74.0 74.6 E 80.0 84.6 E 80.0 82.4 E 80.0 75.1 F	Added Result Qualifier Unit 80.0 74.3 ng/L 80.0 79.4 ng/L 80.0 76.6 ng/L 80.0 79.1 ng/L 80.0 75.6 ng/L 80.0 80.5 E ng/L 80.0 75.8 ng/L 70.8 63.1 ng/L 73.0 72.9 ng/L 74.0 74.6 E ng/L 80.0 84.6 E ng/L 80.0 82.4 E ng/L 80.0 75.1 ng/L	Added Result Qualifier Unit D 80.0 74.3 ng/L ng/L 80.0 79.4 ng/L ng/L 80.0 76.6 ng/L ng/L 80.0 75.6 ng/L ng/L 80.0 80.5 E ng/L 80.0 75.8 ng/L ng/L 70.8 63.1 ng/L ng/L 74.0 74.6 E ng/L 80.0 84.6 E ng/L 80.0 82.4 E ng/L 80.0 75.1 ng/L	Added Result Qualifier Unit D %Rec 80.0 74.3 ng/L 93 80.0 79.4 ng/L 99 80.0 76.6 ng/L 96 80.0 79.1 ng/L 99 80.0 75.6 ng/L 94 80.0 80.5 E ng/L 101 80.0 75.8 ng/L 95 70.8 63.1 ng/L 89 73.0 72.9 ng/L 100 74.0 74.6 E ng/L 101 80.0 84.6 E ng/L 106 80.0 82.4 E ng/L 103 80.0 75.1 ng/L 94	Added Result Qualifier Unit D %Rec Limits 80.0 74.3 ng/L 93 70 - 130 80.0 79.4 ng/L 99 70 - 130 80.0 76.6 ng/L 96 70 - 130 80.0 79.1 ng/L 99 70 - 130 80.0 75.6 ng/L 94 70 - 130 80.0 80.5 E ng/L 95 70 - 130 80.0 75.8 ng/L 95 70 - 130 70.8 63.1 ng/L 89 70 - 130 73.0 72.9 ng/L 100 70 - 130 80.0 74.6 E ng/L 101 70 - 130 80.0 84.6 E ng/L 106 70 - 130 80.0 82.4 E ng/L 103 70 - 130 80.0 75.1 ng/L 94 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 80.0 74.3 ng/L 93 70 - 130 1 80.0 79.4 ng/L 99 70 - 130 3 80.0 76.6 ng/L 96 70 - 130 3 80.0 79.1 ng/L 99 70 - 130 3 80.0 75.6 ng/L 94 70 - 130 1 80.0 80.5 E ng/L 95 70 - 130 4 80.0 75.8 ng/L 95 70 - 130 0 70.8 63.1 ng/L 89 70 - 130 1 73.0 72.9 ng/L 100 70 - 130 3 74.0 74.6 E ng/L 101 70 - 130 4 80.0 84.6 E ng/L 106 70 - 130 4 80.0 82.4 E ng/L 103 70 - 1

LCSD LCSD

Surrogate	%Recovery Qualified	r Limits
d5-NEtFOSAA	89	70 - 130
13C2 PFDA	87	70 - 130
13C2 PFHxA	87	70 - 130

Lab Sample ID: LLCS 410-42050/4-A

Matrix: Water

Analysis Batch: 43156

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 42050

								 -
	Spike	LLCS	LLCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid	1.92	1.73	J	ng/L		90	50 - 150	
Perfluoroheptanoic acid	1.92	1.79	J	ng/L		93	50 - 150	
Perfluorooctanoic acid	1.92	1.87	J	ng/L		98	50 - 150	
Perfluorononanoic acid	1.92	1.79	J	ng/L		93	50 - 150	
Perfluorodecanoic acid	1.92	1.73	J	ng/L		90	50 - 150	
Perfluorotridecanoic acid	1.92	1.78	J	ng/L		93	50 - 150	
Perfluorotetradecanoic acid	1.92	1.69	J	ng/L		88	50 - 150	
Perfluorobutanesulfonic acid	1.70	1.41	J	ng/L		83	50 - 150	
Perfluorohexanesulfonic acid	1.75	1.65	J	ng/L		94	50 - 150	
Perfluorooctanesulfonic acid	1.78	1.68	J	ng/L		94	50 - 150	
NEtFOSAA	1.92	2.04		ng/L		106	50 - 150	
NMeFOSAA	1.92	1.84	J	ng/L		96	50 - 150	
Perfluoroundecanoic acid	1.92	1.77	J	ng/L		92	50 - 150	
Perfluorododecanoic acid	1.92	1.78	J	ng/L		93	50 - 150	

LLCS LLCS

Surrogate	%Recovery Qualifie	r Limits
d5-NEtFOSAA	99	70 - 130
13C2 PFDA	92	70 - 130
13C2 PFHxA	91	70 - 130

Page 20 of 31

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

MB MB

Lab Sample ID: MB 410-44952/1-A

Matrix: Water

Analysis Batch: 45179

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 44952

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluoroheptanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorooctanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorononanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorodecanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorotridecanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorotetradecanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorobutanesulfonic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorohexanesulfonic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorooctanesulfonic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
NEtFOSAA	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
NMeFOSAA	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluoroundecanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	
Perfluorododecanoic acid	2.0	U	2.0	ng/L		09/17/20 11:21	09/17/20 23:26	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	85	70 - 130	09/17/20 11:21	09/17/20 23:26	1
13C2 PFDA	95	70 - 130	09/17/20 11:21	09/17/20 23:26	1
13C2 PFHxA	93	70 - 130	09/17/20 11:21	09/17/20 23:26	1

Lab Sample ID: LCS 410-44952/2-A

Matrix: Water

Analysis Batch: 45179

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 44952

Analysis Baton, 40110	Spike	LCS	I CS				%Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid	20.5	17.9		ng/L	— <u>-</u>	87	70 - 130
Perfluoroheptanoic acid	20.5	19.2		ng/L		94	70 - 130
Perfluorooctanoic acid	20.5	18.7		ng/L		92	70 - 130
Perfluorononanoic acid	20.5	17.5		ng/L		85	70 - 130
Perfluorodecanoic acid	20.5	18.1		ng/L		88	70 - 130
Perfluorotridecanoic acid	20.5	20.4		ng/L		100	70 - 130
Perfluorotetradecanoic acid	20.5	17.5		ng/L		85	70 - 130
Perfluorobutanesulfonic acid	18.1	15.9		ng/L		88	70 - 130
Perfluorohexanesulfonic acid	18.7	16.7		ng/L		90	70 - 130
Perfluorooctanesulfonic acid	19.0	17.0		ng/L		90	70 - 130
NEtFOSAA	20.5	17.4		ng/L		85	70 - 130
NMeFOSAA	20.5	17.8		ng/L		87	70 - 130
Perfluoroundecanoic acid	20.5	18.5		ng/L		91	70 - 130
Perfluorododecanoic acid	20.5	17.9		ng/L		88	70 - 130
I and the second							

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
d5-NEtFOSAA	87	70 - 130
13C2 PFDA	87	70 - 130
13C2 PFHxA	94	70 - 130

Eurofins Lancaster Laboratories Env, LLC

9/23/2020

Job ID: 410-13103-2

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCSD 410-44952/3-A

Matrix: Water

Analysis Batch: 45179

Client Sample ID: Lab Control Sample Dup

			Prep Type: Total/NA Prep Batch: 44952						
			%Rec.		RPD				
Unit	D	%Rec	Limits	RPD	Limit				
ng/L		86	70 - 130	2	30				

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid	20.5	17.6		ng/L		86	70 - 130	2	30
Perfluoroheptanoic acid	20.5	19.5		ng/L		95	70 - 130	2	30
Perfluorooctanoic acid	20.5	18.6		ng/L		91	70 - 130	1	30
Perfluorononanoic acid	20.5	18.2		ng/L		89	70 - 130	4	30
Perfluorodecanoic acid	20.5	17.3		ng/L		84	70 - 130	5	30
Perfluorotridecanoic acid	20.5	19.8		ng/L		96	70 - 130	3	30
Perfluorotetradecanoic acid	20.5	17.5		ng/L		86	70 - 130	0	30
Perfluorobutanesulfonic acid	18.1	16.1		ng/L		89	70 - 130	1	30
Perfluorohexanesulfonic acid	18.7	17.3		ng/L		93	70 - 130	3	30
Perfluorooctanesulfonic acid	19.0	16.8		ng/L		89	70 - 130	1	30
NEtFOSAA	20.5	17.1		ng/L		84	70 - 130	2	30
NMeFOSAA	20.5	17.5		ng/L		86	70 - 130	1	30
Perfluoroundecanoic acid	20.5	17.9		ng/L		87	70 - 130	4	30
Perfluorododecanoic acid	20.5	19.4		na/L		95	70 - 130	8	30

LCSD LCSD

Spike

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
d5-NEtFOSAA	87	70 - 130
13C2 PFDA	90	70 - 130
13C2 PFHxA	91	70 - 130

Lab Sample ID: LLCS 410-44952/4-A

Matrix: Water

Analysis Batch: 45179

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 44952

	Spike	LLCS	LLCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid	1.92	2.09		ng/L		109	50 - 150	
Perfluoroheptanoic acid	1.92	2.25		ng/L		117	50 - 150	
Perfluorooctanoic acid	1.92	2.28		ng/L		119	50 - 150	
Perfluorononanoic acid	1.92	1.97	J	ng/L		103	50 - 150	
Perfluorodecanoic acid	1.92	1.97	J	ng/L		102	50 - 150	
Perfluorotridecanoic acid	1.92	2.44		ng/L		127	50 - 150	
Perfluorotetradecanoic acid	1.92	2.10		ng/L		110	50 - 150	
Perfluorobutanesulfonic acid	1.70	1.72	J	ng/L		101	50 - 150	
Perfluorohexanesulfonic acid	1.75	1.90	J	ng/L		108	50 - 150	
Perfluorooctanesulfonic acid	1.78	2.03		ng/L		114	50 - 150	
NEtFOSAA	1.92	1.87	J	ng/L		98	50 - 150	
NMeFOSAA	1.92	2.00		ng/L		104	50 - 150	
Perfluoroundecanoic acid	1.92	2.15		ng/L		112	50 - 150	
Perfluorododecanoic acid	1.92	2.09		ng/L		109	50 - 150	

LLCS LLCS

Surrogate	%Recovery Qualified	r Limits
d5-NEtFOSAA	93	70 - 130
13C2 PFDA	94	70 - 130
13C2 PFHxA	91	70 - 130

Page 22 of 31

QC Association Summary

Client: CT Male Associates DPC Job ID: 410-13103-2 Project/Site: Hoosick Falls WTP

LCMS

Prep Batch: 42050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-1	GAC Influent	Total/NA	Water	537 DW	
410-13103-1 - DL	GAC Influent	Total/NA	Water	537 DW	
410-13103-2	GAC Midfluent	Total/NA	Water	537 DW	
410-13103-3	GAC Effluent	Total/NA	Water	537 DW	
410-13103-4	PV-1 25	Total/NA	Water	537 DW	
410-13103-5	PV-1 50	Total/NA	Water	537 DW	
410-13103-6	PV-1 75	Total/NA	Water	537 DW	
410-13103-8	PV-2-50	Total/NA	Water	537 DW	
410-13103-9	PV-2 75	Total/NA	Water	537 DW	
410-13103-10	FTB01-200903	Total/NA	Water	537 DW	
410-13103-11	LTB01-200903	Total/NA	Water	537 DW	
MB 410-42050/1-A	Method Blank	Total/NA	Water	537 DW	
LCS 410-42050/2-A	Lab Control Sample	Total/NA	Water	537 DW	
LCSD 410-42050/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	
LLCS 410-42050/4-A	Lab Control Sample	Total/NA	Water	537 DW	

Analysis Batch: 43156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-1	GAC Influent	Total/NA	Water	537 DW	42050
410-13103-2	GAC Midfluent	Total/NA	Water	537 DW	42050
410-13103-3	GAC Effluent	Total/NA	Water	537 DW	42050
410-13103-4	PV-1 25	Total/NA	Water	537 DW	42050
410-13103-5	PV-1 50	Total/NA	Water	537 DW	42050
410-13103-6	PV-1 75	Total/NA	Water	537 DW	42050
410-13103-9	PV-2 75	Total/NA	Water	537 DW	42050
410-13103-10	FTB01-200903	Total/NA	Water	537 DW	42050
410-13103-11	LTB01-200903	Total/NA	Water	537 DW	42050
MB 410-42050/1-A	Method Blank	Total/NA	Water	537 DW	42050
LCS 410-42050/2-A	Lab Control Sample	Total/NA	Water	537 DW	42050
LCSD 410-42050/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	42050
LLCS 410-42050/4-A	Lab Control Sample	Total/NA	Water	537 DW	42050

Analysis Batch: 43914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-1 - DL	GAC Influent	Total/NA	Water	537 DW	42050
410-13103-8	PV-2-50	Total/NA	Water	537 DW	42050

Prep Batch: 44952

Lab Sample ID 410-13103-7	Client Sample ID PV-2 25	Prep Type Total/NA	Matrix Water	Method 537 DW	Prep Batch
MB 410-44952/1-A	Method Blank	Total/NA	Water	537 DW	
LCS 410-44952/2-A	Lab Control Sample	Total/NA	Water	537 DW	
LCSD 410-44952/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	
LLCS 410-44952/4-A	Lab Control Sample	Total/NA	Water	537 DW	

Analysis Batch: 45179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-7	PV-2 25	Total/NA	Water	537 DW	44952
MB 410-44952/1-A	Method Blank	Total/NA	Water	537 DW	44952
LCS 410-44952/2-A	Lab Control Sample	Total/NA	Water	537 DW	44952
LCSD 410-44952/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	44952

Eurofins Lancaster Laboratories Env, LLC

QC Association Summary

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

LCMS (Continued)

Analysis Batch: 45179 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LLCS 410-44952/4-A	Lab Control Sample	Total/NA	Water	537 DW	44952

3

4

5

6

Q

9

10

12

1 /

Job ID: 410-13103-2

Client: CT Male Associates DPC

Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Influent

Date Collected: 09/03/20 09:35 Date Received: 09/04/20 11:03 Lab Sample ID: 410-13103-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 07:32	PY4D	ELLE
Total/NA	Prep	537 DW	DL		42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW	DL	10	43914	09/16/20 02:04	Y6ZN	ELLE

Client Sample ID: GAC Midfluent

Date Collected: 09/03/20 09:42

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 07:43	PY4D	ELLE

Client Sample ID: GAC Effluent

Date Collected: 09/03/20 09:45

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 08:06	PY4D	ELLE

Client Sample ID: PV-1 25

Date Collected: 09/03/20 09:47

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 08:18	PY4D	ELLE

Client Sample ID: PV-1 50

Date Collected: 09/03/20 09:50

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 08:29	PY4D	ELLE

Client Sample ID: PV-1 75

Date Collected: 09/03/20 09:53

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-6

Matrix: Water

9/23/2020

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 08:41	PY4D	ELLE

Eurofins Lancaster Laboratories Env, LLC

Page 25 of 31

Job ID: 410-13103-2

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Client Sample ID: PV-2 25

Lab Sample ID: 410-13103-7

Matrix: Water

Date Collected: 09/03/20 09:56 Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			44952	09/17/20 11:21	Q5YX	ELLE
Total/NA	Analysis	537 DW		1	45179	09/18/20 00:12	DCS9	ELLE

Client Sample ID: PV-2-50 Lab Sample ID: 410-13103-8

Date Collected: 09/03/20 09:59 Matrix: Water

Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43914	09/16/20 02:27	Y6ZN	ELLE

Client Sample ID: PV-2 75 Lab Sample ID: 410-13103-9

Date Collected: 09/03/20 10:05

Matrix: Water

Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 09:15	PY4D	ELLE

Client Sample ID: FTB01-200903 Lab Sample ID: 410-13103-10

Date Collected: 09/03/20 10:10

Date Received: 09/04/20 11:03

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 09:27	PY4D	ELLE

Date Collected: 09/03/20 00:00 Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 DW			42050	09/09/20 10:26	W5MU	ELLE
Total/NA	Analysis	537 DW		1	43156	09/12/20 09:38	PY4D	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Lancaster Laboratories Env, LLC

3

5

6

8

10

12

13

15

Matrix: Water

Matrix: Water

Accreditation/Certification Summary

Client: CT Male Associates DPC

Job ID: 410-13103-2

Project/Site: Hoosick Falls WTP

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York		Program	Identification Number	Expiration Date			
		NELAP	10670	04-01-21			
• ,		eport, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which			
the agency does not o	offer certification.						
Analysis Method	Prep Method	Matrix	Analyte				
537 DW	537 DW	Water	NEtFOSAA				
537 DW	537 DW	Water	NMeFOSAA				
537 DW	537 DW	Water	Perfluorobutanesulfonic acid				
537 DW	537 DW	Water	Perfluorodecanoic acid				
537 DW	537 DW	Water	Perfluorododecanoic acid				
537 DW	537 DW	Water	Perfluoroheptanoic acid				
537 DW	537 DW	Water	Perfluorohexanesulfonic acid	i			
537 DW	537 DW	Water	Perfluorohexanoic acid				
537 DW	537 DW	Water	Perfluorononanoic acid				
537 DW	537 DW	Water	Perfluorotetradecanoic acid				
537 DW	537 DW	Water	Perfluorotridecanoic acid				
537 DW	537 DW	Water	Perfluoroundecanoic acid				

3

4

5

7

Q

11

12

14

Method Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

Method	Method Description	Protocol	Laboratory
537 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	ELLE
537 DW	Extraction of Perfluorinated Alkyl Acids	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Δ

5

6

Ω

9

11

12

14

Sample Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-13103-2

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
10-13103-1	GAC Influent	Water	09/03/20 09:35	09/04/20 11:03	
10-13103-2	GAC Midfluent	Water	09/03/20 09:42	09/04/20 11:03	
10-13103-3	GAC Effluent	Water	09/03/20 09:45	09/04/20 11:03	
10-13103-4	PV-1 25	Water	09/03/20 09:47	09/04/20 11:03	
10-13103-5	PV-1 50	Water	09/03/20 09:50	09/04/20 11:03	
10-13103-6	PV-1 75	Water	09/03/20 09:53	09/04/20 11:03	
10-13103-7	PV-2 25	Water	09/03/20 09:56	09/04/20 11:03	
10-13103-8	PV-2-50	Water	09/03/20 09:59	09/04/20 11:03	
10-13103-9	PV-2 75	Water	09/03/20 10:05	09/04/20 11:03	
10-13103-10	FTB01-200903	Water	09/03/20 10:10	09/04/20 11:03	
10-13103-11	LTB01-200903	Water	09/03/20 00:00	09/04/20 11:03	

Lancaster Laboratories

Environmental Se

est/Chain of Custody

Acct. #: 37191

Group #

10-13103 Chain of Custody

COC#: 20020

	07101		-	rup #	1			_									20030
Client: C.T. Male Associates					Matrix				Analyses Requested						For Lab Use Only		
Project Name/#: Hoosick Falls WTP	Site ID:									Pr	reserva	tion and I	Filtration Codes			Project# 41	000511
Project Manager: Kirk Moline P.O. #: 14.4756					Ħ	ace ace	ace S			Z						SCR#: 2609	25
Sampler: C. Drmsby	mpler: C. Drmsby Quote #: 219169			Sediment	Ground	4	ates		1.1)						Preser	vation Codes	
Phone #: (5/8) 786-7400	For Compli	iance:			Sed	V	3	ers	mod.)	ver.						H = HCI	T = Thiosulfate
State where sample(s) were collected: NY	Yes No			1 1		Containers	537 m	537						N = HNO ₃	B = NaOH		
	Colle	ection		Composite		Potable NPDES	r. Regs	# of	(EPA	PFAS (EPA						S = H ₂ SO ₄ O = Other	$P = H_3PO_4$ $Z = Trizma$
Sample Identification	Date	Time	Grab	Com	Soil	Water	Other:	Total	7 PFAS	14 PF						Re	marks
GAC Influent	9/3/20	0935	V			V		8	V	V							Batch collected
GAC Midfluent		0942	V			V		4	V	V						1176 40	3.1.0.1
GAC EFFLUENT		0945	V			V		4	V	V							
Pv-1 25		0947	V			V		4	V	V							
PV-1 50		0950	V			V		4	V	V							
PV-1 75		0953	V			V		4	V	V							
PV-2 25		0956	V			V		4	V	1			1				
PV-2 50		0959	V			V		4	V	V					\top		
PV-2 75		1005	V			V		4	V	V							
LTB01-200903	V	1010	1				7	4	Z	-			-			-9-2	-
Turnaround Time Requested (TAT) (please	check): Stan	dard [V	RUS	н		quished				D	ate	Time	Red	eived by	y:	Date	Time
(RUSH TAT is subject to Eurofins Lancaster Laborato	ries approval	and surchar	ges.)			The		me	y	9/	3/20	1515					
Date results are needed:					Relin	nquished	by:	0		D	ate	Time	Rec	eived by	y:	Date	Time
E-mail address to send RUSH results: K. Motio		le, Com	_		Delia		Lon						_			/	
Data Package Options (please check if requ					Relir	nquished	by:			D	ate	- Time	Rec	eived by	/:	Date	Time
Type I (Validation/non-CLP) MA MCP TX TRRP - 13				Relin	nquished	hv.			Date		Time	Per	eived b	/	Data	Time	
Type III (Reduced non-CLP) ☐ CT RCP ☐ Type IV (CLP SOW) ☐ ASP Type A ☐				Relinquished by:				D	alc	Time		elved	1.	Date	Time		
			Relinquished by:				D	ate	Time	Rec	eived by	r:	Date	Time			
EDD Format: EQuIS												3,0,05		1	1	9/1/26	1103
If site-specific QC (MS/MSD/Dup) required, submit triplicate volume.	indicate Q	C samples	s and	1	Airbil Relin UPS	quished b	y Com			rier: Other			Tem	peratur	e upon		0

This

Eurofins Lancaster Laboratories Environmental • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

sued by Dept. 40 Managen

2/23/2020

Login Sample Receipt Checklist

Client: CT Male Associates DPC Job Number: 410-13103-2

Login Number: 13103 List Source: Eurofins Lancaster Laboratories Env

List Number: 1

Creator: Rivera, Tatiana

Question Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey N/A meter.</td
The cooler's custody seal is intact.
The cooler or samples do not appear to have been compromised or True tampered with.
Samples were received on ice.
Cooler Temperature is acceptable (=6C, not frozen).</td
Cooler Temperature is recorded.
WV: Container Temperature is acceptable (=6C, not frozen). N/A</td
WV: Container Temperature is recorded. N/A
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used.
Sample bottles are completely filled. True
There is sufficient vol. for all requested analyses.
Multiphasic samples are not present.
Samples do not require splitting or compositing. N/A
Is the Field Sampler's name present on COC?
Sample Preservation Verified. N/A
Residual Chlorine Checked. N/A
Sample custody seals are intact. N/A

4

5

7

9

11

12

14

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-13103-1

Client Project/Site: Hoosick Falls WTP

For:

CT Male Associates DPC 50 Century Hill Dr Latham, New York 12110

Attn: Mr. Kirk Moline

Authorized for release by: 9/15/2020 9:26:39 PM

Dorothy Coplan, Project Manager (717)556-4611

dorothycoplan@eurofinsus.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

13

14

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- * QC recoveries that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result.
- * Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANACASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Dorothy Coplan

Project Manager

9/15/2020 9:26:39 PM

Page 2 of 28

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Isotope Dilution Summary	18
QC Sample Results	19
QC Association Summary	21
Lab Chronicle	22
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Definitions/Glossary

Client: CT Male Associates DPC Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Qualifiers

LCMS

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

1C Result is from the primary column on a dual-column method. 2C Result is from the confirmation column on a dual-column method.

CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Lancaster Laboratories Env, LLC

Case Narrative

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Job ID: 410-13103-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-13103-1

Comments

No additional comments.

Receipt

The samples were received on 9/4/2020 11:03 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.9° C.

LCMS

Methods 537 (modified), 537 DW: The following sample(s) were found to contain residual chlorine: GAC Influent (410-13103-1).

Methods 537 (modified), 537 DW: The following sample(s) were found to contain residual chlorine: PV-2 25 (410-13103-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

o

9

10

12

13

14

Detection Summary

Client: CT Male Associates DPC Job ID: 410-13103-1

Client Sample ID: GAC Influent Lab Sample ID: 410-13103-1 Result Qualifier RL Unit Dil Fac D Method Prep Type

Allalyte	Result Qualifier	NL.	Oilit	DITTAC) Welliou	riep lype
Perfluorobutanoic acid	4.3	4.3	ng/L		537 (Mod)	Total/NA
Perfluorooctanesulfonamide	2.9	1.7	ng/L	1	537 (Mod)	Total/NA
Perfluoropentanoic acid	3.7	1.7	ng/L	1	537 (Mod)	Total/NA
Client Comple ID: CAC Mi	dflaut			l ab C	amanda ID: /	140 42402 2

Client Sample ID: GAC Midfluent	Lab Sample ID: 410-13103-2

No Detections.

Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Effluent	Lab Sample ID: 410-13103-3
--------------------------------	----------------------------

No Detections.

Client Sample ID: PV-1 25	Lab Sample ID: 410-13103-4
---------------------------	----------------------------

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid	5.8	4.3	ng/L	1	537 (Mod)	Total/NA
Perfluoropentanoic acid	1.9	1.7	ng/L	1	537 (Mod)	Total/NA

Client Sample ID: PV-1 50 Lab Sample ID: 410-13103-5

Analyte	Result Qualifier	RL	Unit	Dil Fac	O Method	Prep Type
Perfluorobutanoic acid	6.0	4.4	ng/L	1	537 (Mod)	Total/NA

Client Sample ID: PV-1 75	Lab Sample ID: 410-13103-6
---------------------------	----------------------------

No Detections.

Client Sample ID: PV-2 25	Lab Sample ID: 410-13103-7

No Detections.

Client Sample ID: PV-2-50	Lab Sample ID: 410-13103-8
---------------------------	----------------------------

No Detections.

No Detections.

Client Sample ID: FTB01-200903	Lab Sample ID: 410-13103-10
--------------------------------	-----------------------------

No Detections.

Client Sample ID: LTB01-200903	Lab Sample ID: 410-13103-11
--------------------------------	-----------------------------

No Detections.

This Detection Summary does not include radiochemical test results.

Client: CT Male Associates DPC Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Influent

Date Collected: 09/03/20 09:35 Date Received: 09/04/20 11:03 Lab Sample ID: 410-13103-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 15:38	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 15:38	1
Perfluorobutanoic acid	4.3		4.3	ng/L		09/09/20 07:18	09/10/20 15:38	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:38	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:38	1
Perfluorooctanesulfonamide	2.9		1.7	ng/L		09/09/20 07:18	09/10/20 15:38	1
Perfluoropentanoic acid	3.7		1.7	ng/L		09/09/20 07:18	09/10/20 15:38	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	86		29 - 189			09/09/20 07:18	09/10/20 15:38	1
M2-8:2 FTS	87		34 - 182			09/09/20 07:18	09/10/20 15:38	1
13C4 PFBA	88		41 - 132			09/09/20 07:18	09/10/20 15:38	1
13C5 PFPeA	93		33 - 155			09/09/20 07:18	09/10/20 15:38	1
13C8 PFOS	86		49 - 126			09/09/20 07:18	09/10/20 15:38	1
13C8 FOSA	67		10 - 143			09/09/20 07:18	09/10/20 15:38	1
13C3 PFHxS	94		32 - 145			09/09/20 07:18	09/10/20 15:38	1

6

8

10

11

14

Client: CT Male Associates DPC Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Lab Sample ID: 410-13103-2 **Client Sample ID: GAC Midfluent**

Date Collected: 09/03/20 09:42 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 15:48	1
8:2 Fluorotelomer sulfonic acid	2.7	U	2.7	ng/L		09/09/20 07:18	09/10/20 15:48	1
Perfluorobutanoic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 15:48	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 15:48	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 15:48	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 15:48	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 15:48	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	83		29 - 189			09/09/20 07:18	09/10/20 15:48	1
M2-8:2 FTS	79		34 - 182			09/09/20 07:18	09/10/20 15:48	1
13C4 PFBA	87		41 - 132			09/09/20 07:18	09/10/20 15:48	1
13C5 PFPeA	83		33 - 155			09/09/20 07:18	09/10/20 15:48	1
13C8 PFOS	81		49 - 126			09/09/20 07:18	09/10/20 15:48	1
13C8 FOSA	77		10 - 143			09/09/20 07:18	09/10/20 15:48	1
13C3 PFHxS	81		32 - 145			00/00/20 07:48	09/10/20 15:48	

Client: CT Male Associates DPC Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Effluent

Date Collected: 09/03/20 09:45 Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-3

Matrix: Water

Method: 537 (Mod) - EPA 53 Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 15:57	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 15:57	1
Perfluorobutanoic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 15:57	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:57	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:57	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:57	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 15:57	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	79		29 - 189			09/09/20 07:18	09/10/20 15:57	1
M2-8:2 FTS	70		34 - 182			09/09/20 07:18	09/10/20 15:57	1
13C4 PFBA	83		41 - 132			09/09/20 07:18	09/10/20 15:57	1
13C5 PFPeA	83		33 - 155			09/09/20 07:18	09/10/20 15:57	1
13C8 PFOS	80		49 - 126			09/09/20 07:18	09/10/20 15:57	1
13C8 FOSA	72		10 - 143			09/09/20 07:18	09/10/20 15:57	1
13C3 PFHxS	75		32 - 145			00/00/00 07:40	09/10/20 15:57	

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

Lab Sample ID: 410-13103-4 Client Sample ID: PV-1 25

Date Collected: 09/03/20 09:47 **Matrix: Water** Date Received: 09/04/20 11:03

Method: 537 (Mod) - EPA 53 Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 16:07	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 16:07	1
Perfluorobutanoic acid	5.8		4.3	ng/L		09/09/20 07:18	09/10/20 16:07	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:07	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:07	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:07	1
Perfluoropentanoic acid	1.9		1.7	ng/L		09/09/20 07:18	09/10/20 16:07	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	81		29 - 189			09/09/20 07:18	09/10/20 16:07	1
M2-8:2 FTS	80		34 - 182			09/09/20 07:18	09/10/20 16:07	1
13C4 PFBA	89		41 - 132			09/09/20 07:18	09/10/20 16:07	1
13C5 PFPeA	87		33 - 155			09/09/20 07:18	09/10/20 16:07	1
13C8 PFOS	84		49 - 126			09/09/20 07:18	09/10/20 16:07	1
13C8 FOSA	70		10 - 143			09/09/20 07:18	09/10/20 16:07	1
13C3 PFHxS	79		32 - 145				09/10/20 16:07	

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-1 50

Lab Sample ID: 410-13103-5

Date Collected: 09/03/20 09:50 **Matrix: Water** Date Received: 09/04/20 11:03

Method: 537 (Mod) - EPA 53	37 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 16:17	1
8:2 Fluorotelomer sulfonic acid	2.7	U	2.7	ng/L		09/09/20 07:18	09/10/20 16:17	1
Perfluorobutanoic acid	6.0		4.4	ng/L		09/09/20 07:18	09/10/20 16:17	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:17	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:17	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:17	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:17	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	78		29 - 189			09/09/20 07:18	09/10/20 16:17	1
M2-8:2 FTS	80		34 - 182			09/09/20 07:18	09/10/20 16:17	1
13C4 PFBA	86		41 - 132			09/09/20 07:18	09/10/20 16:17	1
13C5 PFPeA	85		33 - 155			09/09/20 07:18	09/10/20 16:17	1
13C8 PFOS	85		49 - 126			09/09/20 07:18	09/10/20 16:17	1
13C8 FOSA	78		10 - 143			09/09/20 07:18	09/10/20 16:17	1
13C3 PFHxS	81		32 - 145			09/09/20 07:18	09/10/20 16:17	1

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Client Sample ID: PV-1 75

Lab Sample ID: 410-13103-6

Matrix: Water

Date Collected: 09/03/20 09:53 Date Received: 09/04/20 11:03

Analyte	Pocult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
								Dirac
6:2 Fluorotelomer sulfonic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 16:27	1
8:2 Fluorotelomer sulfonic acid	2.7	U	2.7	ng/L		09/09/20 07:18	09/10/20 16:27	1
Perfluorobutanoic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 16:27	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:27	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:27	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:27	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:27	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	77		29 - 189			09/09/20 07:18	09/10/20 16:27	1
M2-8:2 FTS	82		34 - 182			09/09/20 07:18	09/10/20 16:27	1
13C4 PFBA	81		41 - 132			09/09/20 07:18	09/10/20 16:27	1
13C5 PFPeA	81		33 - 155			09/09/20 07:18	09/10/20 16:27	1
13C8 PFOS	81		49 - 126			09/09/20 07:18	09/10/20 16:27	1
13C8 FOSA	70		10 - 143			09/09/20 07:18	09/10/20 16:27	1
13C3 PFHxS	81		32 - 145			09/09/20 07:18	09/10/20 16:27	1

Eurofins Lancaster Laboratories Env, LLC

3

5

7

10

13

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-2 25

Lab Sample ID: 410-13103-7

Date Collected: 09/03/20 09:56 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 16:37	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 16:37	1
Perfluorobutanoic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 16:37	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:37	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:37	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:37	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 16:37	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	79		29 - 189			09/09/20 07:18	09/10/20 16:37	1
M2-8:2 FTS	77		34 - 182			09/09/20 07:18	09/10/20 16:37	1
13C4 PFBA	78		41 - 132			09/09/20 07:18	09/10/20 16:37	1
13C5 PFPeA	80		33 - 155			09/09/20 07:18	09/10/20 16:37	1
13C8 PFOS	75		49 - 126			09/09/20 07:18	09/10/20 16:37	1
13C8 FOSA	68		10 - 143			09/09/20 07:18	09/10/20 16:37	1
13C3 PFHxS	72		32 - 145			09/09/20 07:18	09/10/20 16:37	1

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Client Sample ID: PV-2-50 Date Collected: 09/03/20 09:59

Date Received: 09/04/20 11:03

13C3 PFHxS

Lab Sample ID: 410-13103-8

09/09/20 07:18 09/10/20 16:56

Matrix: Water

Method: 537 (Mod) - EPA 53	87 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 16:56	1
8:2 Fluorotelomer sulfonic acid	2.7	U	2.7	ng/L		09/09/20 07:18	09/10/20 16:56	1
Perfluorobutanoic acid	4.5	U	4.5	ng/L		09/09/20 07:18	09/10/20 16:56	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:56	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:56	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:56	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 16:56	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	81		29 - 189			09/09/20 07:18	09/10/20 16:56	1
M2-8:2 FTS	81		34 - 182			09/09/20 07:18	09/10/20 16:56	1
13C4 PFBA	76		41 - 132			09/09/20 07:18	09/10/20 16:56	1
13C5 PFPeA	74		33 - 155			09/09/20 07:18	09/10/20 16:56	1
13C8 PFOS	80		49 - 126			09/09/20 07:18	09/10/20 16:56	1
13C8 FOSA	68		10 - 143			09/09/20 07:18	09/10/20 16:56	1

32 - 145

-

9

11

12

16

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

Client Sample ID: PV-2 75

Lab Sample ID: 410-13103-9

Date Collected: 09/03/20 10:05 **Matrix: Water** Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 17:06	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 17:06	1
Perfluorobutanoic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 17:06	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:06	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:06	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:06	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:06	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	82		29 - 189			09/09/20 07:18	09/10/20 17:06	1
M2-8:2 FTS	84		34 - 182			09/09/20 07:18	09/10/20 17:06	1
13C4 PFBA	84		41 - 132			09/09/20 07:18	09/10/20 17:06	1
13C5 PFPeA	84		33 - 155			09/09/20 07:18	09/10/20 17:06	1
13C8 PFOS	82		49 - 126			09/09/20 07:18	09/10/20 17:06	1
13C8 FOSA	75		10 - 143			09/09/20 07:18	09/10/20 17:06	1
13C3 PFHxS	82		32 - 145			09/09/20 07:18	09/10/20 17:06	

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Client Sample ID: FTB01-200903

Date Collected: 09/03/20 10:10

Lab Sample ID: 410-13103-10 Matrix: Water

Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 17:16	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 17:16	1
Perfluorobutanoic acid	4.4	U	4.4	ng/L		09/09/20 07:18	09/10/20 17:16	1
Perfluorodecanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:16	1
Perfluoroheptanesulfonic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:16	1
Perfluorooctanesulfonamide	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:16	1
Perfluoropentanoic acid	1.8	U	1.8	ng/L		09/09/20 07:18	09/10/20 17:16	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	86		29 - 189			09/09/20 07:18	09/10/20 17:16	1
M2-8:2 FTS	88		34 - 182			09/09/20 07:18	09/10/20 17:16	1
13C4 PFBA	93		41 - 132			09/09/20 07:18	09/10/20 17:16	1
13C5 PFPeA	90		33 - 155			09/09/20 07:18	09/10/20 17:16	1
13C8 PFOS	86		49 - 126			09/09/20 07:18	09/10/20 17:16	1
13C8 FOSA	77		10 - 143			09/09/20 07:18	09/10/20 17:16	1
13C3 PFHxS	85		32 - 145			09/09/20 07:18	09/10/20 17:16	1

3

Ė

0

8

3

11

12

13

14

Client: CT Male Associates DPC Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Lab Sample ID: 410-13103-11 Client Sample ID: LTB01-200903

Date Collected: 09/03/20 00:00 **Matrix: Water**

Date Received: 09/04/20 11:03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 17:26	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/09/20 07:18	09/10/20 17:26	1
Perfluorobutanoic acid	4.3	U	4.3	ng/L		09/09/20 07:18	09/10/20 17:26	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 17:26	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 17:26	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 17:26	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/09/20 07:18	09/10/20 17:26	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	83		29 - 189			09/09/20 07:18	09/10/20 17:26	1
M2-8:2 FTS	85		34 - 182			09/09/20 07:18	09/10/20 17:26	1
13C4 PFBA	85		41 - 132			09/09/20 07:18	09/10/20 17:26	1
13C5 PFPeA	89		33 - 155			09/09/20 07:18	09/10/20 17:26	1
13C8 PFOS	84		49 - 126			09/09/20 07:18	09/10/20 17:26	1
13C8 FOSA	76		10 - 143			09/09/20 07:18	09/10/20 17:26	1
13C3 PFHxS	79		32 - 145			00/00/00 07:40	09/10/20 17:26	

Isotope Dilution Summary

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

Method: 537 (Mod) - EPA 537 Version 1.1 modified

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)
		M262FTS	M282FTS	PFBA	PFPeA	C8PFOS	PFOSA	C3PFHS
Lab Sample ID	Client Sample ID	(29-189)	(34-182)	(41-132)	(33-155)	(49-126)	(10-143)	(32-145)
410-13103-1	GAC Influent	86	87	88	93	86	67	94
410-13103-2	GAC Midfluent	83	79	87	83	81	77	81
410-13103-3	GAC Effluent	79	70	83	83	80	72	75
410-13103-4	PV-1 25	81	80	89	87	84	70	79
410-13103-5	PV-1 50	78	80	86	85	85	78	81
410-13103-6	PV-1 75	77	82	81	81	81	70	81
410-13103-7	PV-2 25	79	77	78	80	75	68	72
410-13103-8	PV-2-50	81	81	76	74	80	68	80
410-13103-9	PV-2 75	82	84	84	84	82	75	82
410-13103-10	FTB01-200903	86	88	93	90	86	77	85
410-13103-11	LTB01-200903	83	85	85	89	84	76	79
LCS 410-41943/2-A	Lab Control Sample	83	80	84	86	79	74	77
LCSD 410-41943/3-A	Lab Control Sample Dup	79	85	87	89	84	80	81
MB 410-41943/1-A	Method Blank	83	83	87	87	86	81	81

Surrogate Legend

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

C8PFOS = 13C8 PFOS

PFOSA = 13C8 FOSA

C3PFHS = 13C3 PFHxS

Job ID: 410-13103-1

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Method: 537 (Mod) - EPA 537 Version 1.1 modified

Lab Sample ID: MB 410-41943/1-A

Matrix: Water

Analysis Batch: 42531

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 41943

-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	5.0	U	5.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
8:2 Fluorotelomer sulfonic acid	3.0	U	3.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
Perfluorobutanoic acid	5.0	U	5.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
Perfluorodecanesulfonic acid	2.0	U	2.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
Perfluoroheptanesulfonic acid	2.0	U	2.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
Perfluorooctanesulfonamide	2.0	U	2.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
Perfluoropentanoic acid	2.0	U	2.0	ng/L		09/09/20 07:18	09/10/20 14:59	1
	MR	MR		-				

MB MB

Isotope Dilution	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-6:2 FTS	83		29 - 189	09/09/20 07:18	09/10/20 14:59	1
M2-8:2 FTS	83		34 - 182	09/09/20 07:18	09/10/20 14:59	1
13C4 PFBA	87		41 - 132	09/09/20 07:18	09/10/20 14:59	1
13C5 PFPeA	87		33 - 155	09/09/20 07:18	09/10/20 14:59	1
13C8 PFOS	86		49 - 126	09/09/20 07:18	09/10/20 14:59	1
13C8 FOSA	81		10 - 143	09/09/20 07:18	09/10/20 14:59	1
13C3 PFHxS	81		32 - 145	09/09/20 07:18	09/10/20 14:59	1

Lab Sample ID: LCS 410-41943/2-A

Matrix: Water

Analysis Batch: 42531

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 41943

%Rec.

Analyte	Added	Result Qualific	er Unit	D %Rec	Limits	
6:2 Fluorotelomer sulfonic acid	24.3	26.8	ng/L		57 - 137	
8:2 Fluorotelomer sulfonic acid	24.5	31.8	ng/L	130	56 - 140	
Perfluorobutanoic acid	25.6	28.2	ng/L	110	62 - 156	
Perfluorodecanesulfonic acid	24.7	27.2	ng/L	110	61 - 134	
Perfluoroheptanesulfonic acid	24.4	27.0	ng/L	111	67 ₋ 135	
Perfluorooctanesulfonamide	25.6	28.0	ng/L	109	55 ₋ 130	
Perfluoropentanoic acid	25.6	26.1	ng/L	102	72 - 139	
ICS	109					

LCS LCS

Spike

LCS	LCS
OVORV	Ous

%Recovery Quali	fier Limits
83	29 - 189
80	34 - 182
84	41 - 132
86	33 - 155
79	49 - 126
74	10 - 143
77	32 - 145
	83 80 84 86 79 74

Lab Sample ID: LCSD 410-41943/3-A

Matrix: Water

Analysis Batch: 42531

Client Sample	ID:	Lab	Contr	ol	Sample	Dup

Prep Type: Total/NA Prep Batch: 41943

7									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
6:2 Fluorotelomer sulfonic acid	24.3	28.7		ng/L		118	57 - 137	7	30
8:2 Fluorotelomer sulfonic acid	24.5	30.0		ng/L		123	56 - 140	6	30
Perfluorobutanoic acid	25.6	28.8		ng/L		113	62 - 156	2	30
Perfluorodecanesulfonic acid	24.7	29.0		ng/L		117	61 - 134	6	30
Perfluoroheptanesulfonic acid	24.4	26.4		ng/L		108	67 - 135	3	30

Eurofins Lancaster Laboratories Env, LLC

Page 19 of 28 9/15/2020

QC Sample Results

Client: CT Male Associates DPC

Job ID: 410-13103-1

Project/Site: Hoosick Falls WTP

Method: 537 (Mod) - EPA 537 Version 1.1 modified (Continued)

Lab Sample ID: LCSD 410-41943/3-A

Matrix: Water

Analysis Batch: 42531

Client Sample	ID:	Lab	Contro	I Sam	ple	Dup

Prep Type: Total/NA Prep Batch: 41943

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanesulfonamide	25.6	29.0		ng/L		113	55 - 130	4	30
Perfluoropentanoic acid	25.6	26.7		ng/L		104	72 - 139	2	30

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	79		29 - 189
M2-8:2 FTS	85		34 - 182
13C4 PFBA	87		41 - 132
13C5 PFPeA	89		33 - 155
13C8 PFOS	84		49 - 126
13C8 FOSA	80		10 - 143
13C3 PFHxS	81		32 - 145

0

9

10

12

1/

QC Association Summary

Client: CT Male Associates DPC Job ID: 410-13103-1 Project/Site: Hoosick Falls WTP

LCMS

Prep Batch: 41943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-1	GAC Influent	Total/NA	Water	537 (Mod)	
410-13103-2	GAC Midfluent	Total/NA	Water	537 (Mod)	
410-13103-3	GAC Effluent	Total/NA	Water	537 (Mod)	
410-13103-4	PV-1 25	Total/NA	Water	537 (Mod)	
410-13103-5	PV-1 50	Total/NA	Water	537 (Mod)	
410-13103-6	PV-1 75	Total/NA	Water	537 (Mod)	
410-13103-7	PV-2 25	Total/NA	Water	537 (Mod)	
410-13103-8	PV-2-50	Total/NA	Water	537 (Mod)	
410-13103-9	PV-2 75	Total/NA	Water	537 (Mod)	
410-13103-10	FTB01-200903	Total/NA	Water	537 (Mod)	
410-13103-11	LTB01-200903	Total/NA	Water	537 (Mod)	
MB 410-41943/1-A	Method Blank	Total/NA	Water	537 (Mod)	
LCS 410-41943/2-A	Lab Control Sample	Total/NA	Water	537 (Mod)	
LCSD 410-41943/3-A	Lab Control Sample Dup	Total/NA	Water	537 (Mod)	

Analysis Batch: 42531

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-13103-1	GAC Influent	Total/NA	Water	537 (Mod)	41943
410-13103-2	GAC Midfluent	Total/NA	Water	537 (Mod)	41943
410-13103-3	GAC Effluent	Total/NA	Water	537 (Mod)	41943
410-13103-4	PV-1 25	Total/NA	Water	537 (Mod)	41943
410-13103-5	PV-1 50	Total/NA	Water	537 (Mod)	41943
410-13103-6	PV-1 75	Total/NA	Water	537 (Mod)	41943
410-13103-7	PV-2 25	Total/NA	Water	537 (Mod)	41943
410-13103-8	PV-2-50	Total/NA	Water	537 (Mod)	41943
410-13103-9	PV-2 75	Total/NA	Water	537 (Mod)	41943
410-13103-10	FTB01-200903	Total/NA	Water	537 (Mod)	41943
410-13103-11	LTB01-200903	Total/NA	Water	537 (Mod)	41943
MB 410-41943/1-A	Method Blank	Total/NA	Water	537 (Mod)	41943
LCS 410-41943/2-A	Lab Control Sample	Total/NA	Water	537 (Mod)	41943
LCSD 410-41943/3-A	Lab Control Sample Dup	Total/NA	Water	537 (Mod)	41943

Job ID: 410-13103-1

Client: CT Male Associates DPC

Project/Site: Hoosick Falls WTP

Client Sample ID: GAC Influent

Date Collected: 09/03/20 09:35 Date Received: 09/04/20 11:03 Lab Sample ID: 410-13103-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 15:38	OLN7	ELLE

Client Sample ID: GAC Midfluent

Date Collected: 09/03/20 09:42 Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 15:48	OLN7	ELLE

Client Sample ID: GAC Effluent

Date Collected: 09/03/20 09:45 Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)		·	41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 15:57	OLN7	ELLE

Client Sample ID: PV-1 25

Date Collected: 09/03/20 09:47

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 16:07	OLN7	ELLE

Client Sample ID: PV-1 50

Date Collected: 09/03/20 09:50

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-5 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 16:17	OLN7	ELLE

Client Sample ID: PV-1 75

Date Collected: 09/03/20 09:53

Date Received: 09/04/20 11:03

Lab Sample ID: 410-13103-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 16:27	OLN7	ELLE

Eurofins Lancaster Laboratories Env, LLC

Page 22 of 28

9/15/2020

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Client Sample ID: PV-2 25 Lab Sample ID: 410-13103-7 Date Collected: 09/03/20 09:56

Matrix: Water

Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 16:37	OLN7	ELLE

Client Sample ID: PV-2-50 Lab Sample ID: 410-13103-8

Date Collected: 09/03/20 09:59 **Matrix: Water**

Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 16:56	OLN7	ELLE

Client Sample ID: PV-2 75 Lab Sample ID: 410-13103-9

Date Collected: 09/03/20 10:05 **Matrix: Water**

Date Received: 09/04/20 11:03

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 17:06	OLN7	ELLE

Client Sample ID: FTB01-200903

Lab Sample ID: 410-13103-10 Date Collected: 09/03/20 10:10 **Matrix: Water**

Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 17:16	OLN7	ELLE

Client Sample ID: LTB01-200903 Lab Sample ID: 410-13103-11

Date Collected: 09/03/20 00:00 Date Received: 09/04/20 11:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 (Mod)			41943	09/09/20 07:18	NF	ELLE
Total/NA	Analysis	537 (Mod)		1	42531	09/10/20 17:26	OLN7	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Lancaster Laboratories Env, LLC

Matrix: Water

Accreditation/Certification Summary

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New York		NELAP	10670	04-01-21
,		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not on Analysis Method	Prep Method	Matrix	Analyte	
537 (Mod)	537 (Mod)	Water	6:2 Fluorotelomer sulfonic ac	cid
537 (Mod)	537 (Mod)	Water	8:2 Fluorotelomer sulfonic ac	cid
537 (Mod)	537 (Mod)	Water	Perfluorobutanoic acid	
537 (Mod)	537 (Mod)	Water	Perfluorodecanesulfonic acid	I
537 (Mod)	537 (Mod)	Water	Perfluoroheptanesulfonic aci	d
537 (Mod)	537 (Mod)	Water	Perfluorooctanesulfonamide	
537 (Mod)	537 (Mod)	Water	Perfluoropentanoic acid	

4

5

7

0

10

-

13

14

Method Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Method	Method Description	Protocol	Laboratory
537 (Mod)	EPA 537 Version 1.1 modified	EPA	ELLE
537 (Mod)	537 Version 1.1 modified	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Л

£

9

44

12

14

Sample Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-13103-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-13103-1	GAC Influent	Water	09/03/20 09:35	09/04/20 11:03
110-13103-2	GAC Midfluent	Water	09/03/20 09:42	09/04/20 11:03
110-13103-3	GAC Effluent	Water	09/03/20 09:45	09/04/20 11:03
110-13103-4	PV-1 25	Water	09/03/20 09:47	09/04/20 11:03
410-13103-5	PV-1 50	Water	09/03/20 09:50	09/04/20 11:03
110-13103-6	PV-1 75	Water	09/03/20 09:53	09/04/20 11:03
10-13103-7	PV-2 25	Water	09/03/20 09:56	09/04/20 11:03
10-13103-8	PV-2-50	Water	09/03/20 09:59	09/04/20 11:03
10-13103-9	PV-2 75	Water	09/03/20 10:05	09/04/20 11:03
10-13103-10	FTB01-200903	Water	09/03/20 10:10	09/04/20 11:03
10-13103-11	LTB01-200903	Water	09/03/20 00:00	09/04/20 11:03

3

4

5

7

10

11

13

14

Lancaster Laboratories

Environmental Se

est/Chain of Custody

Acct. #: 37191

Group #

10-13103 Chain of Custody

COC#: 20030

					1			1	1	_			_			20030	
Client: C.T. Male Associates				_	Matrix		_	Analyses Requested						For Lab Use Only			
Project Name/#: Hoosick Falls WTP Site ID:									Preservation and F				Filtrati	on Codes	Project# 410	Project# 41000511	
Project Manager: Kirk Moline P.O. #: 14.4756				Sediment	Ground	water			Z					SCR#: 2609	25		
Sampler: C. Drmsby	Quote #: 219169							(1.1)					Preserva	ition Codes			
Phone #: (5/8) 786-7400 For Compliance:			Sec			ē	mod.)	ver. 1.1)					H = HCI	T = Thiosulfate			
State where sample(s) were collected: NY		Yes	No			ble	12	ıtair	537 m	537					N = HNO ₃	B = NaOH	
	Colle	ection		osite		Potable	Reasent	# of Containers	(EPA	(EPA					S = H ₂ SO ₄	$P = H_3PO_4$	
Sample Identification	Date	Time	Grab	Composite	Soil	Water	Other:	Total #	7 PFAS	14 PFAS					0 = Other	Z = Trizma	
GAC Influent	9/3/20	0935	V			V		8	V	V						atch collected	
GAC Midfluent		0942	V			V		4	V	V					1775 45 6		
GAC EFFLUENT		0945	V			V		4	V	V							
PV-1 25		0947	V			V		4	V	V							
PV-1 50		0950	V			V		4	V	V							
PV-1 75		0953	V			V		4	V	V							
PV-2 25		0956	V			V		4	V	1							
PV-2 50		0959	V			V		4	V	V							
PV-2 75		1005	V			V		4	V	V							
FT801-200907 LT801-200903	V	1010	1				7	4	V	2					194	*	
Turnaround Time Requested (TAT) (please	check): Stan	dard 🚺	RUS	Н		quished					Date	Time	Rec	eived by:	Date	Time	
(RUSH TAT is subject to Eurofins Lancaster Laborato	ries approval	and surchar	ges.)			The		me	y	9	13/20	1515					
Date results are needed:			Relinquished by:			0		Date	Time	Received by:		Date	Time				
E-mail address to send RUSH results: K. Moti		le, Com			D !!												
Data Package Options (please check if requ				_	Relin	quished	by:				Date	Time	Rec	eived by:	Date	Time	
Type I (Validation/non-CLP) MA M		TX TRRP	- 13	Ц	Polir	quished	by			/	Date	Time	Date	-ivad I		-	
Type III (Reduced non-CLP) CT RO					1 (CIII	iquisileu	Dy.	/			Date	Time	Rec	eived by:	Date	Time	
Type IV (CLP SOW) ☐ ASP Type A ☐ ASP Type B ☑			Relinquished by:				Date Time		Time	Received by:		Date	Time				
EDD Format: EQuIS					- Comiquiono Coy.				M		941/26	1103					
If site-specific QC (MS/MSD/Dup) required, submit triplicate volume.	indicate Q	C sample:	s and		Airbill Reline UPS	No.: quished b	y Com		al Ca		Γ		Tem	perature upor		0	

This

Eurofins Lancaster Laboratories Environmental • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

sued by Dept. 40 Maria

Login Sample Receipt Checklist

Client: CT Male Associates DPC Job Number: 410-13103-1

Login Number: 13103 List Source: Eurofins Lancaster Laboratories Env

List Number: 1

Creator: Rivera, Tatiana

orodion. Nivora, radiana		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
NV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
NV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
s the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

Eurofins Lancaster Laboratories Env