

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Environment Testing, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-98184-1

Laboratory Sample Delivery Group: HOO Client Project/Site: Hoosick Falls WTP

For:

CT Male Associates DPC 50 Century Hill Dr Latham, New York 12110

Attn: Mr. Kirk Moline

(21 Har

Authorized for release by: 9/30/2022 3:21:31 PM

Paul Hobart, Project Manager (617)312-8660

Paul.Hobart@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

5

6

Q

9

10

12

1 1

15

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- · QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Paul Hobart

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Project Manager

9/30/2022 3:21:31 PM

21 Hus

0

Table of Contents

1 00.010 01 0 01.110	
Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	15
Isotope Dilution Summary	16
QC Sample Results	17
	19
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

3

6

8

40

11

13

14

Definitions/Glossary

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP

SDG: HOO

Qualifiers

1		N/I	C
_	U	IVI	J

Qualifier	Qualifier Description
cn	Refer to Case Narrative for further detail
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

These commonly used abbreviations may be may not be present in this report

Glossary

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL. RA. RE. IN	Indicates a Dilution. Re-analysis. Re-extraction. or additional Initial metals/anion analysis of the sample

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 4 of 27

Case Narrative

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-98184-1

SDG: HOO

Job ID: 410-98184-1

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

Narrative

Job Narrative 410-98184-1

Receipt

The samples were received on 9/16/2022 10:29 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C

PFAS

Method 537_DW: The recovery for the following surrogate(s): d5-NEtFOSAA, 13C2 PFDA and 13C2 PFHxA in the following sample: GAC Effluent (410-98184-5) is outside of QC acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

7

8

12

4 4

15

Detection Summary

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO Client Sample ID: LTB01-220914 Lab Sample ID: 410-98184-1 No Detections. Lab Sample ID: 410-98184-2 Client Sample ID: FTB01-220914 No Detections. Client Sample ID: GAC Influent Lab Sample ID: 410-98184-3 Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** 1.7 Perfluorooctanesulfonamide 3.8 ng/L 537 (Mod) Total/NA Perfluoropentanoic acid 3.9 1.7 ng/L 1 537 (Mod) Total/NA Perfluorohexanoic acid 11 1.7 ng/L 537 DW Total/NA Perfluoroheptanoic acid 12 1.7 ng/L 537 DW Total/NA Perfluorooctanesulfonic acid 537 DW 3.4 1.7 ng/L Total/NA 1 Perfluorooctanoic acid - DL 450 17 537 DW Total/NA ng/L Client Sample ID: GAC Midfluent Lab Sample ID: 410-98184-4 Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** Perfluorobutanoic acid 6.3 4.0 ng/L 537 (Mod) Total/NA Client Sample ID: GAC Effluent Lab Sample ID: 410-98184-5 No Detections.

Analyte

Client Sample ID: PV-2 25

Result Qualifier Unit Dil Fac D Method **Prep Type** RL 537 (Mod) Total/NA Perfluorobutanoic acid 6.9 4.1 ng/L

Client Sample ID: PV-2 50

Lab Sample ID: 410-98184-7

Lab Sample ID: 410-98184-6

No Detections.

Client Sample ID: PV-2 75

Lab Sample ID: 410-98184-8

No Detections.

This Detection Summary does not include radiochemical test results.

Page 6 of 27

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: LTB01-220914

Date Collected: 09/14/22 00:00 Date Received: 09/16/22 10:29

13C2 PFHxA

Lab Sample ID: 410-98184-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.4	U	4.4	ng/L		09/20/22 07:35	09/24/22 09:49	1
8:2 Fluorotelomer sulfonic acid	2.6	U	2.6	ng/L		09/20/22 07:35	09/24/22 09:49	1
Perfluorobutanoic acid	4.4	U	4.4	ng/L		09/20/22 07:35	09/24/22 09:49	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 09:49	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 09:49	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 09:49	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 09:49	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS			17 - 200			09/20/22 07:35	09/24/22 09:49	1
M2-8:2 FTS	92		33 - 200			09/20/22 07:35	09/24/22 09:49	1
13C4 PFBA	103		42 - 165			09/20/22 07:35	09/24/22 09:49	1
13C5 PFPeA	92		38 - 187			09/20/22 07:35	09/24/22 09:49	1
13C8 PFOS	100		51 - 159			09/20/22 07:35	09/24/22 09:49	1
13C8 FOSA	72		10 - 168			09/20/22 07:35	09/24/22 09:49	1
13C3 PFHxS	99		28 - 188			09/20/22 07:35	09/24/22 09:49	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluoroheptanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorooctanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorononanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorodecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorotridecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorotetradecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorobutanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorohexanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorooctanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
NEtFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
NMeFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluoroundecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Perfluorododecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 10:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	95		70 - 130			09/20/22 10:02	09/26/22 10:49	1
13C2 PFDA	108		70 - 130			09/20/22 10:02	09/26/22 10:49	1

70 - 130

105

09/20/22 10:02 09/26/22 10:49

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: FTB01-220914

Date Received: 09/16/22 10:29

13C2 PFHxA

Lab Sample ID: 410-98184-2 Date Collected: 09/14/22 14:30

Matrix: Water

Method: 537 (Mod) - EPA 53	7 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.0	U	4.0	ng/L		09/20/22 07:35	09/24/22 10:00	1
8:2 Fluorotelomer sulfonic acid	2.4	U	2.4	ng/L		09/20/22 07:35	09/24/22 10:00	1
Perfluorobutanoic acid	4.0	U	4.0	ng/L		09/20/22 07:35	09/24/22 10:00	1
Perfluorodecanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:00	1
Perfluoroheptanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:00	1
Perfluorooctanesulfonamide	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:00	1
Perfluoropentanoic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:00	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	108		17 - 200			09/20/22 07:35	09/24/22 10:00	1
M2-8:2 FTS	103		33 - 200			09/20/22 07:35	09/24/22 10:00	1
13C4 PFBA	107		42 - 165			09/20/22 07:35	09/24/22 10:00	1
13C5 PFPeA	98		38 - 187			09/20/22 07:35	09/24/22 10:00	1
13C8 PFOS	109		51 - 159			09/20/22 07:35	09/24/22 10:00	1
13C8 FOSA	82		10 - 168			09/20/22 07:35	09/24/22 10:00	1
_13C3 PFHxS	98		28 - 188			09/20/22 07:35	09/24/22 10:00	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluoroheptanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorooctanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorononanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorodecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorotridecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorotetradecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorobutanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorohexanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorooctanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
NEtFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
NMeFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluoroundecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Perfluorododecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	104		70 - 130			09/20/22 10:02	09/26/22 11:00	1
13C2 PFDA	106		70 - 130			09/20/22 10:02	09/26/22 11:00	1

70 - 130

103

9/30/2022

09/20/22 10:02 09/26/22 11:00

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP
Job ID: 410-98184-1
SDG: HOO

Client Sample ID: GAC Influent Lab Sample ID: 410-98184-3

Date Collected: 09/14/22 15:00 Matrix: Water
Date Received: 09/16/22 10:29

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.2	U	4.2	ng/L		09/20/22 07:35	09/24/22 10:11	1
8:2 Fluorotelomer sulfonic acid	2.5	U	2.5	ng/L		09/20/22 07:35	09/24/22 10:11	1
Perfluorobutanoic acid	4.2	U	4.2	ng/L		09/20/22 07:35	09/24/22 10:11	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 10:11	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 10:11	1
Perfluorooctanesulfonamide	3.8		1.7	ng/L		09/20/22 07:35	09/24/22 10:11	1
Perfluoropentanoic acid	3.9		1.7	ng/L		09/20/22 07:35	09/24/22 10:11	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	104		17 - 200			09/20/22 07:35	09/24/22 10:11	1
M2-8:2 FTS	107		33 - 200			09/20/22 07:35	09/24/22 10:11	1
13C4 PFBA	100		42 - 165			09/20/22 07:35	09/24/22 10:11	1
13C5 PFPeA	95		38 - 187			09/20/22 07:35	09/24/22 10:11	1
13C8 PFOS	103		51 - 159			09/20/22 07:35	09/24/22 10:11	1
13C8 FOSA	35		10 - 168			09/20/22 07:35	09/24/22 10:11	1
13C3 PFHxS	115		28 - 188			09/20/22 07:35	09/24/22 10:11	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	11		1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluoroheptanoic acid	12		1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorononanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorodecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorotridecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorotetradecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorobutanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorohexanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorooctanesulfonic acid	3.4		1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
NEtFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
NMeFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluoroundecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Perfluorododecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	77		70 - 130	09/20/22 10:02	09/26/22 11:12	1
13C2 PFDA	106		70 - 130	09/20/22 10:02	09/26/22 11:12	1
_13C2 PFHxA	124		70 - 130	09/20/22 10:02	09/26/22 11:12	1

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	450		17	ng/L		09/20/22 10:02	09/25/22 14:37	10
Surrogate	%Recovery G	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	86		70 - 130			09/20/22 10:02	09/25/22 14:37	10
13C2 PFDA	96		70 - 130			09/20/22 10:02	09/25/22 14:37	10
13C2 PFHxA	116		70 - 130			09/20/22 10:02	09/25/22 14:37	10

3

6

8

10

12

13

15

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: GAC Midfluent

Date Collected: 09/14/22 15:05 Date Received: 09/16/22 10:29

13C2 PFDA

13C2 PFHxA

Lab Sample ID: 410-98184-4

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.0	U	4.0	ng/L		09/20/22 07:35	09/24/22 10:22	1
8:2 Fluorotelomer sulfonic acid	2.4	U	2.4	ng/L		09/20/22 07:35	09/24/22 10:22	1
Perfluorobutanoic acid	6.3		4.0	ng/L		09/20/22 07:35	09/24/22 10:22	1
Perfluorodecanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:22	1
Perfluoroheptanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:22	1
Perfluorooctanesulfonamide	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:22	1
Perfluoropentanoic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:22	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	103		17 - 200			09/20/22 07:35	09/24/22 10:22	1
M2-8:2 FTS	96		33 - 200			09/20/22 07:35	09/24/22 10:22	1
13C4 PFBA	102		42 - 165			09/20/22 07:35	09/24/22 10:22	1
13C5 PFPeA	102		38 - 187			09/20/22 07:35	09/24/22 10:22	1
13C8 PFOS	108		51 - 159			09/20/22 07:35	09/24/22 10:22	1
13C8 FOSA	75		10 - 168			09/20/22 07:35	09/24/22 10:22	1
13C3 PFHxS	98		28 - 188			09/20/22 07:35	09/24/22 10:22	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluoroheptanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorooctanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorononanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorodecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorotridecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorotetradecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorobutanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorohexanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorooctanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
NEtFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
NMeFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluoroundecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Perfluorododecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	96		70 - 130			09/20/22 10:02	09/26/22 11:23	1

70 - 130

70 - 130

98

108

09/20/22 10:02 09/26/22 11:23

09/20/22 10:02 09/26/22 11:23

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: GAC Effluent

Date Received: 09/16/22 10:29

13C2 PFHxA

Lab Sample ID: 410-98184-5 Date Collected: 09/14/22 15:10

Matrix: Water

Method: 537 (Mod) - EPA 53	37 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.0	U	4.0	ng/L		09/20/22 07:35	09/24/22 10:44	1
8:2 Fluorotelomer sulfonic acid	2.4	U	2.4	ng/L		09/20/22 07:35	09/24/22 10:44	1
Perfluorobutanoic acid	4.0	U	4.0	ng/L		09/20/22 07:35	09/24/22 10:44	1
Perfluorodecanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:44	1
Perfluoroheptanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:44	1
Perfluorooctanesulfonamide	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:44	1
Perfluoropentanoic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:44	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	102		17 - 200			09/20/22 07:35	09/24/22 10:44	1
M2-8:2 FTS	105		33 - 200			09/20/22 07:35	09/24/22 10:44	1
13C4 PFBA	107		42 - 165			09/20/22 07:35	09/24/22 10:44	1
13C5 PFPeA	113		38 - 187			09/20/22 07:35	09/24/22 10:44	1
13C8 PFOS	106		51 - 159			09/20/22 07:35	09/24/22 10:44	1
13C8 FOSA	69		10 - 168			09/20/22 07:35	09/24/22 10:44	1
13C3 PFHxS	98		28 - 188			09/20/22 07:35	09/24/22 10:44	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluoroheptanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorooctanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorononanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorodecanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorotridecanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorotetradecanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorobutanesulfonic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorohexanesulfonic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorooctanesulfonic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
NEtFOSAA	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
NMeFOSAA	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluoroundecanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Perfluorododecanoic acid	1.6	U cn	1.6	ng/L		09/20/22 10:02	09/26/22 10:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	188	S1+ cn	70 - 130			09/20/22 10:02	09/26/22 10:14	1
13C2 PFDA	221	S1+ cn	70 - 130			09/20/22 10:02	09/26/22 10:14	1

70 - 130

218 S1+ cn

09/20/22 10:02 09/26/22 10:14

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: PV-2 25 Lab Sample ID: 410-98184-6 Date Collected: 09/14/22 15:20

Date Received: 09/16/22 10:29

13C2 PFHxA

Matrix: Water

Method: 537 (Mod) - EPA 53	7 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.1	U	4.1	ng/L		09/20/22 07:35	09/24/22 10:55	1
8:2 Fluorotelomer sulfonic acid	2.5	U	2.5	ng/L		09/20/22 07:35	09/24/22 10:55	1
Perfluorobutanoic acid	6.9		4.1	ng/L		09/20/22 07:35	09/24/22 10:55	1
Perfluorodecanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:55	1
Perfluoroheptanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:55	1
Perfluorooctanesulfonamide	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:55	1
Perfluoropentanoic acid	1.6	U	1.6	ng/L		09/20/22 07:35	09/24/22 10:55	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	106		17 - 200			09/20/22 07:35	09/24/22 10:55	1
M2-8:2 FTS	89		33 - 200			09/20/22 07:35	09/24/22 10:55	1
13C4 PFBA	105		42 - 165			09/20/22 07:35	09/24/22 10:55	1
13C5 PFPeA	93		38 - 187			09/20/22 07:35	09/24/22 10:55	1
13C8 PFOS	107		51 - 159			09/20/22 07:35	09/24/22 10:55	1
13C8 FOSA	78		10 - 168			09/20/22 07:35	09/24/22 10:55	1
13C3 PFHxS	105		28 - 188			09/20/22 07:35	09/24/22 10:55	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluoroheptanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorooctanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorononanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorodecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorotridecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorotetradecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorobutanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorohexanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorooctanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
NEtFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
NMeFOSAA	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluoroundecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Perfluorododecanoic acid	1.7	U	1.7	ng/L		09/20/22 10:02	09/26/22 11:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	92		70 - 130			09/20/22 10:02	09/26/22 11:35	1
13C2 PFDA	101		70 - 130			09/20/22 10:02	09/26/22 11:35	1

70 - 130

106

09/20/22 10:02 09/26/22 11:35

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: PV-2 50 Lab Sample ID: 410-98184-7

Date Collected: 09/14/22 15:25 **Matrix: Water** Date Received: 09/16/22 10:29

Method: 537 (Mod) - EPA 53	37 Version 1.1	modified						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.2	U	4.2	ng/L		09/20/22 07:35	09/24/22 11:06	1
8:2 Fluorotelomer sulfonic acid	2.5	U	2.5	ng/L		09/20/22 07:35	09/24/22 11:06	1
Perfluorobutanoic acid	4.2	U	4.2	ng/L		09/20/22 07:35	09/24/22 11:06	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 11:06	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 11:06	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 11:06	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 11:06	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	109		17 - 200			09/20/22 07:35	09/24/22 11:06	1
M2-8:2 FTS	95		33 - 200			09/20/22 07:35	09/24/22 11:06	1
13C4 PFBA	105		42 - 165			09/20/22 07:35	09/24/22 11:06	1
13C5 PFPeA	101		38 - 187			09/20/22 07:35	09/24/22 11:06	1
13C8 PFOS	109		51 - 159			09/20/22 07:35	09/24/22 11:06	1
13C8 FOSA	54		10 - 168			09/20/22 07:35	09/24/22 11:06	1
13C3 PFHxS	105		28 - 188			09/20/22 07:35	09/24/22 11:06	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluoroheptanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorooctanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorononanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorodecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorotridecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorotetradecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorobutanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorohexanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorooctanesulfonic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
NEtFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
NMeFOSAA	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluoroundecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Perfluorododecanoic acid	1.6	U	1.6	ng/L		09/20/22 10:02	09/26/22 11:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	97		70 - 130			09/20/22 10:02	09/26/22 11:46	1
13C2 PFDA	104		70 - 130			09/20/22 10:02	09/26/22 11:46	1
13C2 PFHxA	108		70 - 130			09/20/22 10:02	09/26/22 11:46	1

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Client Sample ID: PV-2 75 Lab Sample ID: 410-98184-8 Date Collected: 09/14/22 15:30

Matrix: Water

Date Received: 09/16/22 10:29
- Method: 537 (Mod) - EPA 537 Version 1.1 mo
Analyte Result Out

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 Fluorotelomer sulfonic acid	4.1	U	4.1	ng/L		09/20/22 07:35	09/24/22 12:46	1
8:2 Fluorotelomer sulfonic acid	2.5	U	2.5	ng/L		09/20/22 07:35	09/24/22 12:46	1
Perfluorobutanoic acid	4.1	U	4.1	ng/L		09/20/22 07:35	09/24/22 12:46	1
Perfluorodecanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 12:46	1
Perfluoroheptanesulfonic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 12:46	1
Perfluorooctanesulfonamide	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 12:46	1
Perfluoropentanoic acid	1.7	U	1.7	ng/L		09/20/22 07:35	09/24/22 12:46	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
M2-6:2 FTS	129		17 - 200			09/20/22 07:35	09/24/22 12:46	1
M2-8:2 FTS	124		33 - 200			09/20/22 07:35	09/24/22 12:46	1
13C4 PFBA	130		42 - 165			09/20/22 07:35	09/24/22 12:46	1
13C5 PFPeA	116		38 - 187			09/20/22 07:35	09/24/22 12:46	1
4000 BEOO	404		54 450			00/00/00 07 07	00/04/00 40 40	

13C5 PFPeA	116		38 - 187			09/20/22 07:35	09/24/22 12:46	1
13C8 PFOS	131		51 - 159			09/20/22 07:35	09/24/22 12:46	1
13C8 FOSA	102		10 - 168			09/20/22 07:35	09/24/22 12:46	1
13C3 PFHxS	131		28 - 188			09/20/22 07:35	09/24/22 12:46	1
Method: 537 DW - Perfluor	πατέα ΔΙΚΛΙ Δς	ine ii (:/W:						
	•	•	•					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•	Qualifier	•	Unit ng/L	<u>D</u>	Prepared 09/20/22 10:02		Dil Fac
Analyte	Result	Qualifier U	RL		<u>D</u>	09/20/22 10:02		Dil Fac
Analyte Perfluorohexanoic acid	Result 1.6	Qualifier U	1.6 RL	ng/L	<u>D</u>	09/20/22 10:02 09/20/22 10:02	09/26/22 10:26	Dil Fac 1 1 1
Analyte Perfluorohexanoic acid Perfluoroheptanoic acid	1.6 1.6	Qualifier U U U	RL 1.6 1.6	ng/L ng/L	<u>D</u>	09/20/22 10:02 09/20/22 10:02 09/20/22 10:02	09/26/22 10:26 09/26/22 10:26	Dil Fac 1 1 1 1 1

Perfluorohexanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluoroheptanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorooctanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorononanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorodecanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorotridecanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorotetradecanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorobutanesulfonic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorohexanesulfonic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorooctanesulfonic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
NEtFOSAA	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
NMeFOSAA	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluoroundecanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1
Perfluorododecanoic acid	1.6 L	J 1.6	ng/L	09/20/22 10:02	09/26/22 10:26	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	91		70 - 130	09/20/22 10:02	09/26/22 10:26	1
13C2 PFDA	103		70 - 130	09/20/22 10:02	09/26/22 10:26	1
_13C2 PFHxA	109		70 - 130	09/20/22 10:02	09/26/22 10:26	1

Surrogate Summary

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surrog
		d5NEFOS	PFDA	PFHxA
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)
410-98184-1	LTB01-220914	95	108	105
410-98184-2	FTB01-220914	104	106	103
410-98184-3 - DL	GAC Influent	86	96	116
410-98184-3	GAC Influent	77	106	124
410-98184-4	GAC Midfluent	96	98	108
410-98184-5	GAC Effluent	188 S1+	221 S1+	218 S1+
		cn	cn	cn
410-98184-6	PV-2 25	92	101	106
410-98184-7	PV-2 50	97	104	108
410-98184-8	PV-2 75	91	103	109
LCS 410-297719/2-A	Lab Control Sample	91	106	109
LCSD 410-297719/3-A	Lab Control Sample Dup	88	99	101
MB 410-297719/1-A	Method Blank	94	108	100

d5NEFOS = d5-NEtFOSAA

PFDA = 13C2 PFDA

PFHxA = 13C2 PFHxA

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 15 of 27

Isotope Dilution Summary

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Method: 537 (Mod) - EPA 537 Version 1.1 modified

Matrix: Water Prep Type: Total/NA

	Percent Isotope Dilution Recovery (Acceptance Limits)							
	M262FTS	M282FTS	PFBA	PFPeA	C8PFOS	PFOSA	C3PFHS	
Client Sample ID	(17-200)	(33-200)	(42-165)	(38-187)	(51-159)	(10-168)	(28-188)	
LTB01-220914	101	92	103	92	100	72	99	
FTB01-220914	108	103	107	98	109	82	98	
GAC Influent	104	107	100	95	103	35	115	
GAC Midfluent	103	96	102	102	108	75	98	
GAC Effluent	102	105	107	113	106	69	98	
PV-2 25	106	89	105	93	107	78	105	
PV-2 50	109	95	105	101	109	54	105	
PV-2 75	129	124	130	116	131	102	131	
	LTB01-220914 FTB01-220914 GAC Influent GAC Midfluent GAC Effluent PV-2 25 PV-2 50	Client Sample ID (17-200) LTB01-220914 101 FTB01-220914 108 GAC Influent 104 GAC Midfluent 103 GAC Effluent 102 PV-2 25 106 PV-2 50 109	Client Sample ID M262FTS M282FTS LTB01-220914 101 92 FTB01-220914 108 103 GAC Influent 104 107 GAC Midfluent 103 96 GAC Effluent 102 105 PV-2 25 106 89 PV-2 50 109 95	Client Sample ID M262FTS M282FTS PFBA LTB01-220914 101 92 103 FTB01-220914 108 103 107 GAC Influent 104 107 100 GAC Midfluent 103 96 102 GAC Effluent 102 105 107 PV-2 25 106 89 105 PV-2 50 109 95 105	Client Sample ID M262FTS M282FTS PFBA PFPeA LTB01-220914 101 92 103 92 FTB01-220914 108 103 107 98 GAC Influent 104 107 100 95 GAC Midfluent 103 96 102 102 GAC Effluent 102 105 107 113 PV-2 25 106 89 105 93 PV-2 50 109 95 105 101	Client Sample ID M262FTS M282FTS PFBA PFPeA C8PFOS LTB01-220914 101 92 103 92 100 FTB01-220914 108 103 107 98 109 GAC Influent 104 107 100 95 103 GAC Midfluent 103 96 102 102 108 GAC Effluent 102 105 107 113 106 PV-2 25 106 89 105 93 107 PV-2 50 109 95 105 101 109	Client Sample ID M262FTS M282FTS PFBA PFPeA C8PFOS PFOSA LTB01-220914 101 92 103 92 100 72 FTB01-220914 108 103 107 98 109 82 GAC Influent 104 107 100 95 103 35 GAC Midfluent 103 96 102 102 108 75 GAC Effluent 102 105 107 113 106 69 PV-2 25 106 89 105 93 107 78 PV-2 50 109 95 105 101 109 54	

Surrogate Legend

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA C8PFOS = 13C8 PFOS PFOSA = 13C8 FOSA

C3PFHS = 13C3 PFHxS

Job ID: 410-98184-1 SDG: HOO

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 410-297719/1-A

Matrix: Water

Analysis Batch: 299725

Client: CT Male Associates DPC

Project/Site: Hoosick Falls WTP

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 297719

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluoroheptanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorooctanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorononanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorodecanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorotridecanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorotetradecanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorobutanesulfonic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorohexanesulfonic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorooctanesulfonic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
NEtFOSAA	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
NMeFOSAA	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluoroundecanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1
Perfluorododecanoic acid	2.0	U	2.0	ng/L		09/20/22 10:02	09/26/22 09:28	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	94		70 - 130	09/20/22 10:02	09/26/22 09:28	1
13C2 PFDA	108		70 - 130	09/20/22 10:02	09/26/22 09:28	1
13C2 PFHxA	100		70 - 130	09/20/22 10:02	09/26/22 09:28	1

Lab Sample ID: LCS 410-297719/2-A

Matrix: Water

Analysis Batch: 299725

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 297719

Alialysis Dalcil. 233123							Fiep Datcii. 2911 19
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid	20.5	21.1		ng/L		103	70 - 130
Perfluoroheptanoic acid	20.5	21.5		ng/L		105	70 - 130
Perfluorooctanoic acid	20.5	20.9		ng/L		102	70 - 130
Perfluorononanoic acid	20.5	21.3		ng/L		104	70 - 130
Perfluorodecanoic acid	20.5	20.6		ng/L		101	70 - 130
Perfluorotridecanoic acid	20.5	20.1		ng/L		98	70 - 130
Perfluorotetradecanoic acid	20.5	18.7		ng/L		91	70 - 130
Perfluorobutanesulfonic acid	18.1	16.8		ng/L		93	70 - 130
Perfluorohexanesulfonic acid	18.7	19.4		ng/L		104	70 - 130
Perfluorooctanesulfonic acid	19.0	18.5		ng/L		98	70 - 130
NEtFOSAA	20.5	17.6		ng/L		86	70 - 130
NMeFOSAA	20.5	20.2		ng/L		99	70 - 130
Perfluoroundecanoic acid	20.5	20.1		ng/L		98	70 - 130
Perfluorododecanoic acid	20.5	18.7		ng/L		91	70 - 130

LCS LCS

Surrogate	%Recovery Qu	ıalifier	Limits
d5-NEtFOSAA	91		70 - 130
13C2 PFDA	106		70 - 130
13C2 PFHxA	109		70 - 130

Eurofins Lancaster Laboratories Environment Testing, LLC

QC Sample Results

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

Method: 537 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCSD 410-297719/3-A

Matrix: Water

Analysis Batch: 299725

Client Sample ID: L	.ab	Control	Sam	ple	Dup
		Pron Ty	me: T	Ota	I/N/A

Prep Batch: 297719

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid	20.5	19.9		ng/L		97	70 - 130	6	30
Perfluoroheptanoic acid	20.5	20.9		ng/L		102	70 - 130	3	30
Perfluorooctanoic acid	20.5	21.1		ng/L		103	70 - 130	1	30
Perfluorononanoic acid	20.5	20.1		ng/L		98	70 - 130	6	30
Perfluorodecanoic acid	20.5	20.1		ng/L		98	70 - 130	3	30
Perfluorotridecanoic acid	20.5	20.3		ng/L		99	70 - 130	1	30
Perfluorotetradecanoic acid	20.5	18.8		ng/L		92	70 - 130	1	30
Perfluorobutanesulfonic acid	18.1	16.4		ng/L		91	70 - 130	2	30
Perfluorohexanesulfonic acid	18.7	20.5		ng/L		109	70 - 130	5	30
Perfluorooctanesulfonic acid	19.0	19.6		ng/L		103	70 - 130	6	30
NEtFOSAA	20.5	20.8		ng/L		102	70 - 130	17	30
NMeFOSAA	20.5	19.4		ng/L		95	70 - 130	4	30
Perfluoroundecanoic acid	20.5	20.0		ng/L		98	70 - 130	1	30
Perfluorododecanoic acid	20.5	19.0		ng/L		93	70 - 130	2	30

LCSD LCSD

		_
Surrogate	%Recovery Qua	lifier Limits
d5-NEtFOSAA	88	70 - 130
13C2 PFDA	99	70 - 130
13C2 PFHxA	101	70 - 130
	d5-NEtFOSAA 13C2 PFDA	d5-NEtFOSAA 88 13C2 PFDA 99

QC Association Summary

Client: CT Male Associates DPC Job ID: 410-98184-1 Project/Site: Hoosick Falls WTP SDG: HOO

LCMS

Prep Batch: 297623

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-98184-1	LTB01-220914	Total/NA	Water	537 (Mod)	
410-98184-2	FTB01-220914	Total/NA	Water	537 (Mod)	
410-98184-3	GAC Influent	Total/NA	Water	537 (Mod)	
410-98184-4	GAC Midfluent	Total/NA	Water	537 (Mod)	
410-98184-5	GAC Effluent	Total/NA	Water	537 (Mod)	
410-98184-6	PV-2 25	Total/NA	Water	537 (Mod)	
410-98184-7	PV-2 50	Total/NA	Water	537 (Mod)	
410-98184-8	PV-2 75	Total/NA	Water	537 (Mod)	

Prep Batch: 297719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-98184-1	LTB01-220914	Total/NA	Water	537 DW	_
410-98184-2	FTB01-220914	Total/NA	Water	537 DW	
410-98184-3	GAC Influent	Total/NA	Water	537 DW	
410-98184-3 - DL	GAC Influent	Total/NA	Water	537 DW	
410-98184-4	GAC Midfluent	Total/NA	Water	537 DW	
410-98184-5	GAC Effluent	Total/NA	Water	537 DW	
410-98184-6	PV-2 25	Total/NA	Water	537 DW	
410-98184-7	PV-2 50	Total/NA	Water	537 DW	
410-98184-8	PV-2 75	Total/NA	Water	537 DW	
MB 410-297719/1-A	Method Blank	Total/NA	Water	537 DW	
LCS 410-297719/2-A	Lab Control Sample	Total/NA	Water	537 DW	
LCSD 410-297719/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	

Analysis Batch: 299277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-98184-1	LTB01-220914	Total/NA	Water	537 (Mod)	297623
410-98184-2	FTB01-220914	Total/NA	Water	537 (Mod)	297623
410-98184-3	GAC Influent	Total/NA	Water	537 (Mod)	297623
410-98184-4	GAC Midfluent	Total/NA	Water	537 (Mod)	297623
410-98184-5	GAC Effluent	Total/NA	Water	537 (Mod)	297623
410-98184-6	PV-2 25	Total/NA	Water	537 (Mod)	297623
410-98184-7	PV-2 50	Total/NA	Water	537 (Mod)	297623
410-98184-8	PV-2 75	Total/NA	Water	537 (Mod)	297623

Analysis Batch: 299498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-98184-3 - DL	GAC Influent	Total/NA	Water	537 DW	297719

Analysis Batch: 299725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-98184-1	LTB01-220914	Total/NA	Water	537 DW	297719
410-98184-2	FTB01-220914	Total/NA	Water	537 DW	297719
410-98184-3	GAC Influent	Total/NA	Water	537 DW	297719
410-98184-4	GAC Midfluent	Total/NA	Water	537 DW	297719
410-98184-5	GAC Effluent	Total/NA	Water	537 DW	297719
410-98184-6	PV-2 25	Total/NA	Water	537 DW	297719
410-98184-7	PV-2 50	Total/NA	Water	537 DW	297719
410-98184-8	PV-2 75	Total/NA	Water	537 DW	297719
MB 410-297719/1-A	Method Blank	Total/NA	Water	537 DW	297719
LCS 410-297719/2-A	Lab Control Sample	Total/NA	Water	537 DW	297719

Eurofins Lancaster Laboratories Environment Testing, LLC

QC Association Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-98184-1 SDG: HOO

LCMS (Continued)

Analysis Batch: 299725 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 410-297719/3-A	Lab Control Sample Dup	Total/NA	Water	537 DW	297719

Job ID: 410-98184-1 SDG: HOO

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

ah Sample ID: 410 09194 1

Lab Sample ID: 410-98184-1

Matrix: Water

Client Sample ID: LTB01-220914

Date Collected: 09/14/22 00:00 Date Received: 09/16/22 10:29

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 09:49
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 10:49

Client Sample ID: FTB01-220914

Date Collected: 09/14/22 14:30 Date Received: 09/16/22 10:29 Lab Sample ID: 410-98184-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 10:00
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 11:00

Client Sample ID: GAC Influent

Date Collected: 09/14/22 15:00

Date Received: 09/16/22 10:29

Lab Sample ID: 410-98184-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 10:11
Total/NA	Prep	537 DW	DL		297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW	DL	10	299498	QD9Y	ELLE	09/25/22 14:37
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 11:12

Client Sample ID: GAC Midfluent

Date Collected: 09/14/22 15:05

Date Received: 09/16/22 10:29

ID: 410-98184-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 10:22
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 11:23

Client Sample ID: GAC Effluent

Date Collected: 09/14/22 15:10

Date Received: 09/16/22 10:29

Lab Sample ID: 410-98184-5	
-	
Matrix: Water	

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 10:44
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 10:14

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 21 of 27

4

5

7

9

10

12

14

15

Lab Chronicle

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-98184-1 SDG: HOO

Client Sample ID: PV-2 25

Lab Sample ID: 410-98184-6

Matrix: Water

Date Collected: 09/14/22 15:20 Date Received: 09/16/22 10:29

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	537 (Mod)			297623	RC3V	ELLE	09/20/22 07:35
Total/NA	Analysis	537 (Mod)		1	299277	DQV6	ELLE	09/24/22 10:55
Total/NA	Prep	537 DW			297719	HQ8B	ELLE	09/20/22 10:02
Total/NA	Analysis	537 DW		1	299725	DCS9	ELLE	09/26/22 11:35

Lab Sample ID: 410-98184-7

Matrix: Water

Date Collected: 09/14/22 15:25 Date Received: 09/16/22 10:29

Client Sample ID: PV-2 50

Batch Batch Dilution **Prepared** Batch Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab 09/20/22 07:35 Total/NA Prep 537 (Mod) 297623 RC3V ELLE ELLE Total/NA 09/24/22 11:06 Analysis 537 (Mod) 299277 DQV6 1 Total/NA Prep 537 DW 297719 HQ8B **ELLE** 09/20/22 10:02 Total/NA **ELLE** 09/26/22 11:46 Analysis 537 DW 299725 DCS9 1

Client Sample ID: PV-2 75 Lab Sample ID: 410-98184-8 Date Collected: 09/14/22 15:30

Matrix: Water

Date Received: 09/16/22 10:29

Batch **Batch** Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number Analyst or Analyzed Lab Total/NA Prep 537 (Mod) 297623 RC3V ELLE 09/20/22 07:35 Total/NA Analysis 537 (Mod) 299277 DQV6 **ELLE** 09/24/22 12:46 1 Total/NA Prep 537 DW 297719 HQ8B ELLE 09/20/22 10:02 Total/NA Analysis 537 DW 299725 DCS9 **ELLE** 09/26/22 10:26 1

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Lancaster Laboratories Environment Testing, LLC

Accreditation/Certification Summary

Client: CT Male Associates DPC
Project/Site: Hoosick Falls WTP
Job ID: 410-98184-1
SDG: HOO

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		ogram	Identification Number	Expiration Date 04-01-23	
lew York		LAP	10670	U4-U I-Z3	
,	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which	
the agency does not o		Matrix	Analyta		
Analysis Method 537 (Mod)	Prep Method 537 (Mod)	Matrix Water	Analyte 6:2 Fluorotelomer sulfonic a	oid	
537 (Mod)	537 (Mod)	Water	8:2 Fluorotelomer sulfonic acid		
, ,	` '	Water			
537 (Mod)	537 (Mod)	Water	Perfluorobutanoic acid Perfluorodecanesulfonic acid		
537 (Mod)	537 (Mod)				
537 (Mod)	537 (Mod)	Water	Perfluoroheptanesulfonic acid		
537 (Mod)	537 (Mod)	Water	Perfluorooctanesulfonamide		
537 (Mod)	537 (Mod)	Water	Perfluoropentanoic acid		
537 DW	537 DW	Water	NEtFOSAA		
537 DW	537 DW	Water	NMeFOSAA		
537 DW	537 DW	Water	Perfluorobutanesulfonic acid		
537 DW	537 DW	Water	Perfluorodecanoic acid		
537 DW	537 DW	Water	Perfluorododecanoic acid		
537 DW	537 DW	Water	Perfluoroheptanoic acid		
537 DW	537 DW	Water	Perfluorohexanesulfonic acid		
537 DW	537 DW	Water	Perfluorohexanoic acid		
537 DW	537 DW	Water	Perfluorononanoic acid		
537 DW	537 DW	Water	Perfluorooctanesulfonic acid		
537 DW	537 DW	Water	Perfluorooctanoic acid		
537 DW	537 DW	Water	Perfluorotetradecanoic acid		
537 DW	537 DW	Water	Perfluorotridecanoic acid		
537 DW	537 DW	Water	Perfluoroundecanoic acid		

Method Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-98184-1

SDG: HOO

Method	Method Description	Protocol	Laboratory
537 (Mod)	EPA 537 Version 1.1 modified	EPA	ELLE
537 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	ELLE
537 (Mod)	537 Version 1.1 modified	EPA	ELLE
537 DW	Extraction of Perfluorinated Alkyl Acids	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

3

6

R

9

11

12

14

15

Sample Summary

Client: CT Male Associates DPC Project/Site: Hoosick Falls WTP

Job ID: 410-98184-1

SDG: HOO

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-98184-1	LTB01-220914	Water	09/14/22 00:00	09/16/22 10:29
410-98184-2	FTB01-220914	Water	09/14/22 14:30	09/16/22 10:29
410-98184-3	GAC Influent	Water	09/14/22 15:00	09/16/22 10:29
410-98184-4	GAC Midfluent	Water	09/14/22 15:05	09/16/22 10:29
410-98184-5	GAC Effluent	Water	09/14/22 15:10	09/16/22 10:29
410-98184-6	PV-2 25	Water	09/14/22 15:20	09/16/22 10:29
410-98184-7	PV-2 50	Water	09/14/22 15:25	09/16/22 10:29
410-98184-8	PV-2 75	Water	09/14/22 15:30	09/16/22 10:29

-

4

5

6

8

9

11

40

14

Eur 🔅 eurofins 2425 **Chain of Custody Record Environment Testing** Lanca America Phone Carrier Tracking No(s): COC No: Hobart, Paul Clier State of Origin: Client Contact: E-Mail: Paul.Hobart@Eurofinset.com Daniel King Page 1 of 1 Company Joh #: CT Male Associates DPC **Analysis Requested** Due Date Requested: Address: Preservation Codes: 50 Century Hill Dr A - HCL M - Hexane TAT Requested (days): City: B - NaOH N - None Latham C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S Compliance Project: A Yes A No. Q - Na2SO3 NY, 12110 E - NaHSO4 F - MeOH R - Na2S2O3 518-786-7400 S - H2SO4 G - Amchlor 14.4756 H - Ascorbic Acid T - TSP Dodecahydrate W0# i - Ica U - Acetone Perform MS/MSD (Yes or No) V - MCAA d.king@ctmale.com K - EDTA W - pH 4-5 Project Name: Project #: L - EDA Z - Trizma 41002111 Hoosick Falls WTP SSOW#: Total Number of Matrix Sample (W=water, Type S-solid, Sample (C=comp, Time Sample Identification Sample Date G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: LTB01-220914 9/4/22 RW FTB01-220914 1430 RW 1500 4 ISOS GAC 4 1510 1520 1525 1530 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Disposal By Lab

Archive For Mont Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Unknown Radiological
Deliverable Requested: IDIII, IV, Other (specify) Return To Client Months Special Instructions/QC Requirements Method of Shipment Empty Kit Relinquished by: Time: Company Datestime 1/15/22-0730 Received by: Company Relinquished by Received by: Relinquished by: Date/Time Company Received by

3

5

8

10

12

15

16

Cooler Temperature(s) °C and Ot

Custody Seals Intact: Custody Seal No.

A Yes A No

Ver: 01/16/2019

Login Sample Receipt Checklist

Client: CT Male Associates DPC

Job Number: 410-98184-1

SDG Number: HOO

Login Number: 98184 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 1

Creator: McBeth, Jessica

Question	Answer	Comment
The cooler's custody seal is intact.		
The cooler or samples do not appear to have been compromised or tampered with.		
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td></td>		
Cooler Temperature is recorded.		
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.		
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.		
There are no discrepancies between the containers received and the COC.		
Sample containers have legible labels.		
Containers are not broken or leaking.		
Sample collection date/times are provided.		
Appropriate sample containers are used.		
Sample bottles are completely filled.		
There is sufficient vol. for all requested analyses.		
Is the Field Sampler's name present on COC?		
Sample custody seals are intact.		
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?		

3

5

7

9

4 4

12

14